%J Frontiers in Human Neuroscience %V 8 %A H Singh %A M Bauer %A W Chowanski %A Y Sui %A D Atkinson %A D Baurley %A M Fry %A J Evans %A N Bianchi-Berthouze %O Copyright © 2014 Singh, Bauer, Chowanski, Sui, Atkinson, Baurley, Fry, Evans and Bianchi-Berthouze. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. %D 2014 %T The brain’s response to pleasant touch: an EEG investigation of tactile caressing %L discovery1453267 %K Affective tactile experience, EEG, Textile, emotion, touch %X Somatosensation as a proximal sense can have a strong impact on our attitude toward physical objects and other human beings. However, relatively little is known about how hedonic valence of touch is processed at the cortical level. Here we investigated the electrophysiological correlates of affective tactile sensation during caressing of the right forearm with pleasant and unpleasant textile fabrics. We show dissociation between more physically driven differential brain responses to the different fabrics in early somatosensory cortex – the well-known mu-suppression (10–20 Hz) – and a beta-band response (25–30 Hz) in presumably higher-order somatosensory areas in the right hemisphere that correlated well with the subjective valence of tactile caressing. Importantly, when using single trial classification techniques, beta-power significantly distinguished between pleasant and unpleasant stimulation on a single trial basis with high accuracy. Our results therefore suggest a dissociation of the sensory and affective aspects of touch in the somatosensory system and may provide features that may be used for single trial decoding of affective mental states from simple electroencephalographic measurements.