<> <http://www.w3.org/2000/01/rdf-schema#comment> "The repository administrator has not yet configured an RDF license."^^<http://www.w3.org/2001/XMLSchema#string> . <> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/1421894> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/AcademicArticle> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Article> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/dc/terms/title> "Analysis as a source of geometry: a non-geometric representation of the Dirac equation"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/ontology/bibo/abstract> "Consider a formally self-adjoint first order linear differential operator acting on pairs (two-columns) of complex-valued scalar fields over a four-manifold without boundary. We examine the geometric content of such an operator and show that it implicitly contains a Lorentzian metric, Pauli matrices, connection coefficients for spinor fields and an electromagnetic covector potential. This observation allows us to give a simple representation of the massive Dirac equation as a system of four scalar equations involving an arbitrary two-by-two matrix operator as above and its adjugate. The point of the paper is that in order to write down the Dirac equation in the physically meaningful four-dimensional hyperbolic setting one does not need any geometric constructs. All the geometry required is contained in a single analytic object—an abstract formally self-adjoint first order linear differential operator acting on pairs of complex-valued scalar fields."^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/dc/terms/date> "2015-04-24" . <https://discovery.ucl.ac.uk/id/document/135680> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Document> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/ontology/bibo/volume> "48" . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/ontology/bibo/issue> "16" . <https://discovery.ucl.ac.uk/id/publication/ext-17518113> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Collection> . <https://discovery.ucl.ac.uk/id/publication/ext-17518113> <http://xmlns.com/foaf/0.1/name> "JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/publication/ext-17518113> . <https://discovery.ucl.ac.uk/id/publication/ext-17518113> <http://www.w3.org/2002/07/owl#sameAs> <urn:issn:17518113> . <https://discovery.ucl.ac.uk/id/publication/ext-17518113> <http://purl.org/ontology/bibo/issn> "17518113" . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/ontology/bibo/status> <http://purl.org/ontology/bibo/status/published> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-8d3e9a6668da150b542adf056b4de2ec> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/1421894#authors> . <https://discovery.ucl.ac.uk/id/eprint/1421894#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_1> <https://discovery.ucl.ac.uk/id/person/ext-8d3e9a6668da150b542adf056b4de2ec> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-73253b791af59966a083f66368a16e64> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/1421894#authors> . <https://discovery.ucl.ac.uk/id/eprint/1421894#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_2> <https://discovery.ucl.ac.uk/id/person/ext-73253b791af59966a083f66368a16e64> . <https://discovery.ucl.ac.uk/id/person/ext-73253b791af59966a083f66368a16e64> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> . <https://discovery.ucl.ac.uk/id/person/ext-73253b791af59966a083f66368a16e64> <http://xmlns.com/foaf/0.1/givenName> "D"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-73253b791af59966a083f66368a16e64> <http://xmlns.com/foaf/0.1/familyName> "Vassiliev"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-73253b791af59966a083f66368a16e64> <http://xmlns.com/foaf/0.1/name> "D Vassiliev"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-8d3e9a6668da150b542adf056b4de2ec> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> . <https://discovery.ucl.ac.uk/id/person/ext-8d3e9a6668da150b542adf056b4de2ec> <http://xmlns.com/foaf/0.1/givenName> "Y-L"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-8d3e9a6668da150b542adf056b4de2ec> <http://xmlns.com/foaf/0.1/familyName> "Fang"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-8d3e9a6668da150b542adf056b4de2ec> <http://xmlns.com/foaf/0.1/name> "Y-L Fang"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/EPrint> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/ArticleEPrint> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/repository> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/135680> . <https://discovery.ucl.ac.uk/id/document/135680> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> . <https://discovery.ucl.ac.uk/id/document/135680> <http://www.w3.org/2000/01/rdf-schema#label> "Analysis as a source of geometry: a non-geometric representation of the Dirac equation (Text)"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/document/135680> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/1421894/1/1751-8121_48_16_165203.pdf> . <https://discovery.ucl.ac.uk/id/document/135680> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/1421894/1/1751-8121_48_16_165203.pdf> . <https://discovery.ucl.ac.uk/id/eprint/1421894/1/1751-8121_48_16_165203.pdf> <http://www.w3.org/2000/01/rdf-schema#label> "1751-8121_48_16_165203.pdf"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/135682> . <https://discovery.ucl.ac.uk/id/document/135682> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> . <https://discovery.ucl.ac.uk/id/document/135682> <http://www.w3.org/2000/01/rdf-schema#label> "Analysis as a source of geometry: a non-geometric representation of the Dirac equation (Other)"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/document/135682> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/135680> . <https://discovery.ucl.ac.uk/id/document/135682> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/135680> . <https://discovery.ucl.ac.uk/id/document/135682> <http://eprints.org/relation/isIndexCodesVersionOf> <https://discovery.ucl.ac.uk/id/document/135680> . <https://discovery.ucl.ac.uk/id/document/135682> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/1421894/2/indexcodes.txt> . <https://discovery.ucl.ac.uk/id/document/135682> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/1421894/2/indexcodes.txt> . <https://discovery.ucl.ac.uk/id/eprint/1421894/2/indexcodes.txt> <http://www.w3.org/2000/01/rdf-schema#label> "indexcodes.txt"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/1421894> <http://www.w3.org/2000/01/rdf-schema#seeAlso> <https://discovery.ucl.ac.uk/id/eprint/1421894/> . <https://discovery.ucl.ac.uk/id/eprint/1421894/> <http://purl.org/dc/elements/1.1/title> "HTML Summary of #1421894 \n\nAnalysis as a source of geometry: a non-geometric representation of the Dirac equation\n\n" . <https://discovery.ucl.ac.uk/id/eprint/1421894/> <http://purl.org/dc/elements/1.1/format> "text/html" . <https://discovery.ucl.ac.uk/id/eprint/1421894/> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/1421894> .