eprintid: 1399078 rev_number: 34 eprint_status: archive userid: 608 dir: disk0/01/39/90/78 datestamp: 2013-07-10 18:34:41 lastmod: 2021-11-29 00:45:00 status_changed: 2017-02-27 14:19:35 type: article metadata_visibility: show item_issues_count: 0 creators_name: Royle, GF creators_name: Sokal, AD title: Linear Bound in Terms of Maxmaxflow for the Chromatic Roots of Series-Parallel Graphs ispublished: pub divisions: UCL divisions: B04 divisions: C06 divisions: F59 keywords: Applied, Mathematics, chromatic polynomial, multivariate Tutte polynomial, antiferromagnetic Potts model, chromatic roots, maxmaxflow, series-parallel graph, MODEL PARTITION-FUNCTIONS, NONCOMPACT W BOUNDARIES, GROUND-STATE DEGENERACY, RELIABILITY POLYNOMIALS, POTTS ANTIFERROMAGNETS, COMPLEX ZEROS, ALGORITHMS, SUBGRAPHS, REGIONS, chromatic polynomial, multivariate Tutte polynomial, antiferromagnetic Potts model, chromatic roots, maxmaxflow, series-parallel graph note: © 2015, Society for Industrial and Applied Mathematics. abstract: We prove that the (real or complex) chromatic roots of a series-parallel graph with maxmaxflow $\Lambda$ lie in the disc $|q-1| < (\Lambda-1)/\log 2$. More generally, the same bound holds for the (real or complex) roots of the multivariate Tutte polynomial when the edge weights lie in the “real antiferromagnetic regime” $-1 \le v_e \le 0$. For each $\Lambda \geq 3$, we exhibit a family of graphs, namely, the “leaf-joined trees”, with maxmaxflow $\Lambda$ and chromatic roots accumulating densely on the circle $|q-1|=\Lambda -1$, thereby showing that our result is within a factor $1/\log 2 \approx 1.442695$ of being sharp. date: 2015-01-01 publisher: SIAM PUBLICATIONS official_url: http://dx.doi.org/10.1137/130930133 vfaculties: VMPS oa_status: green full_text_type: pub language: eng primo: open primo_central: open_green article_type_text: Article verified: verified_manual elements_source: arXiv elements_id: 884150 doi: 10.1137/130930133 lyricists_name: Sokal, Alan lyricists_id: ADSOK62 full_text_status: public publication: SIAM Journal on Discrete Mathematics volume: 29 number: 4 pagerange: 2117-2159 pages: 43 issn: 0895-4801 citation: Royle, GF; Sokal, AD; (2015) Linear Bound in Terms of Maxmaxflow for the Chromatic Roots of Series-Parallel Graphs. SIAM Journal on Discrete Mathematics , 29 (4) pp. 2117-2159. 10.1137/130930133 <https://doi.org/10.1137/130930133>. Green open access document_url: https://discovery.ucl.ac.uk/id/eprint/1399078/1/Sokal_130930133.pdf