TY - JOUR A1 - Royle, GF A1 - Sokal, AD JF - SIAM Journal on Discrete Mathematics UR - http://dx.doi.org/10.1137/130930133 SN - 0895-4801 IS - 4 N1 - © 2015, Society for Industrial and Applied Mathematics. SP - 2117 VL - 29 KW - Applied KW - Mathematics KW - chromatic polynomial KW - multivariate Tutte polynomial KW - antiferromagnetic Potts model KW - chromatic roots KW - maxmaxflow KW - series-parallel graph KW - MODEL PARTITION-FUNCTIONS KW - NONCOMPACT W BOUNDARIES KW - GROUND-STATE DEGENERACY KW - RELIABILITY POLYNOMIALS KW - POTTS ANTIFERROMAGNETS KW - COMPLEX ZEROS KW - ALGORITHMS KW - SUBGRAPHS KW - REGIONS KW - chromatic polynomial KW - multivariate Tutte polynomial KW - antiferromagnetic Potts model KW - chromatic roots KW - maxmaxflow KW - series-parallel graph PB - SIAM PUBLICATIONS N2 - We prove that the (real or complex) chromatic roots of a series-parallel graph with maxmaxflow $\Lambda$ lie in the disc $|q-1| < (\Lambda-1)/\log 2$. More generally, the same bound holds for the (real or complex) roots of the multivariate Tutte polynomial when the edge weights lie in the ?real antiferromagnetic regime? $-1 \le v_e \le 0$. For each $\Lambda \geq 3$, we exhibit a family of graphs, namely, the ?leaf-joined trees?, with maxmaxflow $\Lambda$ and chromatic roots accumulating densely on the circle $|q-1|=\Lambda -1$, thereby showing that our result is within a factor $1/\log 2 \approx 1.442695$ of being sharp. ID - discovery1399078 AV - public Y1 - 2015/01/01/ EP - 2159 TI - Linear Bound in Terms of Maxmaxflow for the Chromatic Roots of Series-Parallel Graphs ER -