eprintid: 10206056
rev_number: 9
eprint_status: archive
userid: 699
dir: disk0/10/20/60/56
datestamp: 2025-03-14 11:22:56
lastmod: 2025-03-14 11:22:56
status_changed: 2025-03-14 11:22:56
type: article
metadata_visibility: show
sword_depositor: 699
creators_name: Fang, S
creators_name: Chen, G
creators_name: Huang, C
creators_name: Gao, Y
creators_name: Li, Y
creators_name: Wong, KK
creators_name: Chambers, JA
title: Weighted Sum Rate Enhancement by Using Dual-Side IOS-Assisted Full-Duplex for Multi-User MIMO Systems
ispublished: inpress
divisions: UCL
divisions: B04
divisions: F46
note: This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.
abstract: This paper established a novel multi-input multi-output (MIMO) communication network, in the presence of full-duplex (FD) transmitters and receivers with the assistance of dual-side intelligent omni surface (IOS). Compared with the traditional IOS, the dual-side IOS allows signals from both sides to reflect and refract simultaneously, which further exploits the potential of metasurfaces to avoid frequency dependence, and size, weight, and power (SWaP) limitations. By considering both the downlink and uplink transmissions, we aim to maximize the weighted sum rate, subject to the transmit power constraints of the transmitter, the users and the dual-side reflecting and refracting phase shifts constraints. However, the formulated sum rate maximization problem is not convex, hence we exploit the weighted minimum mean square error (WMMSE) approach, and tackle the original problem iteratively by solving two sub-problems. For the beamforming matrices optimization of the downlink and uplink, we resort to the Lagrangian dual method combined with a bisection search to obtain the results. Furthermore, we resort to the quadratically constrained quadratic programming (QCQP) method to optimize the reflecting and refracting phase shifts of both sides of the IOS. Simulation results validate the efficacy of the proposed algorithm and demonstrate the superiority of the dual-side IOS.
date: 2025-02-25
date_type: published
publisher: Institute of Electrical and Electronics Engineers (IEEE)
official_url: https://doi.org/10.1109/jiot.2025.3544804
oa_status: green
full_text_type: other
language: eng
primo: open
primo_central: open_green
verified: verified_manual
elements_id: 2368936
doi: 10.1109/JIOT.2025.3544804
lyricists_name: Wong, Kai-Kit
lyricists_id: KWONG98
actors_name: Wong, Kai-Kit
actors_id: KWONG98
actors_role: owner
full_text_status: public
publication: IEEE Internet of Things Journal
pagerange: 1-14
citation:        Fang, S;    Chen, G;    Huang, C;    Gao, Y;    Li, Y;    Wong, KK;    Chambers, JA;      (2025)    Weighted Sum Rate Enhancement by Using Dual-Side IOS-Assisted Full-Duplex for Multi-User MIMO Systems.                   IEEE Internet of Things Journal     pp. 1-14.    10.1109/JIOT.2025.3544804 <https://doi.org/10.1109/JIOT.2025.3544804>.    (In press).    Green open access   
 
document_url: https://discovery.ucl.ac.uk/id/eprint/10206056/7/Wong_Weighted%20Sum%20Rate%20Enhancement%20by%20Using%20Dual-Side%20IOS-Assisted%20Full-Duplex%20for%20Multi-User%20MIMO%20Systems_AAM.pdf