%A António M Caetano %A Simon N Chandler-Wilde %A Xavier Claeys %A Andrew Gibbs %A David P Hewett %A Andrea Moiola %T Integral equation methods for acoustic scattering by fractals %J Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences %K Helmholtz equation, function spaces, iteratedfunction system, Galerkin method, boundaryelement method %X We study sound-soft time-harmonic acousticscattering by general scatterers, including fractalscatterers, in 2D and 3D space. For an arbitrarycompact scatterer Γ we reformulate the Dirichletboundary value problem for the Helmholtz equationas a first kind integral equation (IE) on Γ involvingthe Newton potential. The IE is well-posed, exceptpossibly at a countable set of frequencies, andreduces to existing single-layer boundary IEs whenΓ is the boundary of a bounded Lipschitz open set,a screen, or a multi-screen. When Γ is uniformlyof d-dimensional Hausdorff dimension in a sensewe make precise (a d-set), the operator in ourequation is an integral operator on Γ with respectto d-dimensional Hausdorff measure, with kernel theHelmholtz fundamental solution, and we proposea piecewise-constant Galerkin discretization of theIE, which converges in the limit of vanishing meshwidth. When Γ is the fractal attractor of an iteratedfunction system of contracting similarities we proveconvergence rates under assumptions on Γ and the IEsolution, and describe a fully discrete implementationusing recently proposed quadrature rules for singularintegrals on fractals. We present numerical results fora range of examples and make our software availableas a Julia code. %L discovery10204451 %I The Royal Society %N 2306 %V 481 %O © 2025 The Author(s). Published by the Royal Society under the terms of theCreative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). %D 2025