<> <http://www.w3.org/2000/01/rdf-schema#comment> "The repository administrator has not yet configured an RDF license."^^<http://www.w3.org/2001/XMLSchema#string> .
<> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/10202907> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/AcademicArticle> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Article> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/dc/terms/title> "Second harmonic generation digital pathology with artificial intelligence: breakthroughs in studying fibrosis dynamics and treatment response"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/ontology/bibo/abstract> "Fibrosis represents a highly conserved response to tissue injury. Assessing fibrosis is central in diagnostic pathology, evaluating treatment response and prognosis. Second harmonic generation digital pathology with artificial intelligence analyses provides unparalleled precision and granularity in quantifying tissue collagen in its natural, unstained environment.. This technology reveals new insights into the balance between fibrogenesis and fibrolysis, crucial in tracking disease evolution and treatment outcomes. This review describes applications of second harmonic generation digital pathology with artificial intelligence for detailed characterization of liver fibrosis, assessing treatment response in clinical trials, analyzing collagen features in other chronic diseases and cancers. Additionally, it offers a perspective on future developments in integrating various technologies into a comprehensive diagnostic workflow for more effective evaluation of therapy and disease prognosis."^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/dc/terms/date> "2024" .
<https://discovery.ucl.ac.uk/id/document/1813464> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Document> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/ontology/bibo/volume> "2" .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/ontology/bibo/issue> "2" .
<https://discovery.ucl.ac.uk/id/org/ext-82d97d3d46da72def3ef996d0ad0810c> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Organization> .
<https://discovery.ucl.ac.uk/id/org/ext-82d97d3d46da72def3ef996d0ad0810c> <http://xmlns.com/foaf/0.1/name> "Informa UK Limited"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/dc/terms/publisher> <https://discovery.ucl.ac.uk/id/org/ext-82d97d3d46da72def3ef996d0ad0810c> .
<https://discovery.ucl.ac.uk/id/publication/ext-0927634d3906980a3d74db831b4100f9> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Collection> .
<https://discovery.ucl.ac.uk/id/publication/ext-0927634d3906980a3d74db831b4100f9> <http://xmlns.com/foaf/0.1/name> "Future Medicine AI"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/publication/ext-0927634d3906980a3d74db831b4100f9> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/ontology/bibo/status> <http://purl.org/ontology/bibo/status/published> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-1e77517475ac8f3505e03fdf990bfb47> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10202907#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10202907#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_1> <https://discovery.ucl.ac.uk/id/person/ext-1e77517475ac8f3505e03fdf990bfb47> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-fa44e20cce647e5884641dbddf24d125> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10202907#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10202907#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_2> <https://discovery.ucl.ac.uk/id/person/ext-fa44e20cce647e5884641dbddf24d125> .
<https://discovery.ucl.ac.uk/id/person/ext-fa44e20cce647e5884641dbddf24d125> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-fa44e20cce647e5884641dbddf24d125> <http://xmlns.com/foaf/0.1/givenName> "Elaine"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-fa44e20cce647e5884641dbddf24d125> <http://xmlns.com/foaf/0.1/familyName> "Chng"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-fa44e20cce647e5884641dbddf24d125> <http://xmlns.com/foaf/0.1/name> "Elaine Chng"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-1e77517475ac8f3505e03fdf990bfb47> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-1e77517475ac8f3505e03fdf990bfb47> <http://xmlns.com/foaf/0.1/givenName> "Nikolai V"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-1e77517475ac8f3505e03fdf990bfb47> <http://xmlns.com/foaf/0.1/familyName> "Naoumov"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-1e77517475ac8f3505e03fdf990bfb47> <http://xmlns.com/foaf/0.1/name> "Nikolai V Naoumov"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/EPrint> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/ArticleEPrint> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/repository> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813464> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1813464> <http://www.w3.org/2000/01/rdf-schema#label> "Second harmonic generation digital pathology with artificial intelligence: breakthroughs in studying fibrosis dynamics and treatment response (Text)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://purl.org/dc/elements/1.1/hasVersion> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://eprints.org/ontology/hasPublished> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813464> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10202907/1/SHG%20Digital-Pathology%20AI%20breakthroughs%20in%20fibrosis%20FMAI%202024.pdf> .
<https://discovery.ucl.ac.uk/id/document/1813464> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10202907/1/SHG%20Digital-Pathology%20AI%20breakthroughs%20in%20fibrosis%20FMAI%202024.pdf> .
<https://discovery.ucl.ac.uk/id/eprint/10202907/1/SHG%20Digital-Pathology%20AI%20breakthroughs%20in%20fibrosis%20FMAI%202024.pdf> <http://www.w3.org/2000/01/rdf-schema#label> "SHG Digital-Pathology AI breakthroughs in fibrosis FMAI 2024.pdf"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1813465> .
<https://discovery.ucl.ac.uk/id/document/1813465> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1813465> <http://www.w3.org/2000/01/rdf-schema#label> "Second harmonic generation digital pathology with artificial intelligence: breakthroughs in studying fibrosis dynamics and treatment response (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1813465> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813465> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813465> <http://eprints.org/relation/islightboxThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813465> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10202907/2/lightbox.jpg> .
<https://discovery.ucl.ac.uk/id/document/1813465> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10202907/2/lightbox.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10202907/2/lightbox.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "lightbox.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1813466> .
<https://discovery.ucl.ac.uk/id/document/1813466> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1813466> <http://www.w3.org/2000/01/rdf-schema#label> "Second harmonic generation digital pathology with artificial intelligence: breakthroughs in studying fibrosis dynamics and treatment response (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1813466> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813466> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813466> <http://eprints.org/relation/ispreviewThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813466> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10202907/3/preview.jpg> .
<https://discovery.ucl.ac.uk/id/document/1813466> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10202907/3/preview.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10202907/3/preview.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "preview.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1813467> .
<https://discovery.ucl.ac.uk/id/document/1813467> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1813467> <http://www.w3.org/2000/01/rdf-schema#label> "Second harmonic generation digital pathology with artificial intelligence: breakthroughs in studying fibrosis dynamics and treatment response (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1813467> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813467> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813467> <http://eprints.org/relation/ismediumThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813467> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10202907/4/medium.jpg> .
<https://discovery.ucl.ac.uk/id/document/1813467> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10202907/4/medium.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10202907/4/medium.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "medium.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1813468> .
<https://discovery.ucl.ac.uk/id/document/1813468> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1813468> <http://www.w3.org/2000/01/rdf-schema#label> "Second harmonic generation digital pathology with artificial intelligence: breakthroughs in studying fibrosis dynamics and treatment response (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1813468> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813468> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813468> <http://eprints.org/relation/issmallThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813468> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10202907/5/small.jpg> .
<https://discovery.ucl.ac.uk/id/document/1813468> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10202907/5/small.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10202907/5/small.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "small.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1813469> .
<https://discovery.ucl.ac.uk/id/document/1813469> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1813469> <http://www.w3.org/2000/01/rdf-schema#label> "Second harmonic generation digital pathology with artificial intelligence: breakthroughs in studying fibrosis dynamics and treatment response (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1813469> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813469> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813469> <http://eprints.org/relation/isIndexCodesVersionOf> <https://discovery.ucl.ac.uk/id/document/1813464> .
<https://discovery.ucl.ac.uk/id/document/1813469> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10202907/6/indexcodes.txt> .
<https://discovery.ucl.ac.uk/id/document/1813469> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10202907/6/indexcodes.txt> .
<https://discovery.ucl.ac.uk/id/eprint/10202907/6/indexcodes.txt> <http://www.w3.org/2000/01/rdf-schema#label> "indexcodes.txt"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10202907> <http://www.w3.org/2000/01/rdf-schema#seeAlso> <https://discovery.ucl.ac.uk/id/eprint/10202907/> .
<https://discovery.ucl.ac.uk/id/eprint/10202907/> <http://purl.org/dc/elements/1.1/title> "HTML Summary of #10202907 \n\nSecond harmonic generation digital pathology with artificial intelligence: breakthroughs in studying fibrosis dynamics and treatment response\n\n" .
<https://discovery.ucl.ac.uk/id/eprint/10202907/> <http://purl.org/dc/elements/1.1/format> "text/html" .
<https://discovery.ucl.ac.uk/id/eprint/10202907/> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/10202907> .