eprintid: 10196893
rev_number: 10
eprint_status: archive
userid: 699
dir: disk0/10/19/68/93
datestamp: 2024-09-13 08:26:33
lastmod: 2024-09-13 08:27:25
status_changed: 2024-09-13 08:26:33
type: article
metadata_visibility: show
sword_depositor: 699
creators_name: Ashraf, Waqar Muhammad
creators_name: Jamil, Muhammad Ahmad
creators_name: Uddin, Ghulam Moeen
creators_name: Shboul, Bashar
creators_name: Ishfaq, Kashif
creators_name: Ng, Kim Choon
creators_name: Dixon, Mike
creators_name: Xu, Ben Bin
creators_name: Shahzad, Muhammad Wakil
title: Machine learning assisted improved desalination pilot system design and experimentation for the circular economy
ispublished: pub
divisions: UCL
divisions: B04
divisions: F43
keywords: Science & Technology, Technology, Physical Sciences, Engineering, Environmental, Engineering, Chemical, Water Resources, Engineering, Water circular economy, Distillate production, Machine learning, Sustainable development goal, Desalination, WATER, PERFORMANCE, ADSORBENT, EFFICIENT, ENERGY
note: © 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
abstract: Desalination is among the most feasible solutions to supply sustainable and clean drinking water in water scarcity areas. In this regard, Multi-Effect Desalination (MED) systems are particularly preferred for harsh feeds (high temperature and salinity) because of their robust mode of operation for water production. However, maintaining the efficient operation of the MED systems is challenging because of the large system design and variables' interdependencies that are sensitive to the distillate production. Therefore, this research leverages the power of machine learning and optimization to estimate the optimal operating conditions for the maximum distillate production from the MED system. In the first step, detailed experimentation is conducted for distillate production against hot water temperature (HWT) varying from 38 to 70 °C, and feed water temperature (FWT) is changed from 34 to 42 °C. Whereas, the feed flow rate (FFR) is investigated to be varied nearly from 3.6 to 8.7 LPM in the three stages, i.e., FFR-S1, FFR-S2 and FFR-S3. The compiled dataset is used to make the process models of the MED system by three ML-based algorithms, i.e., Artificial Neural Network (ANN), Support Vector Machine (SVM), and Gaussian Process Regression (GPR) under rigorous hyperparameters optimization. GPR exhibited superior predictive performance than those of ANN and SVM on R2 value of 0.99 and RMSE of 0.026 LPM. Monte Carlo technique-based variable significance analysis revealed that the HWT has the highest effect on distillate production with a percentage significance of 95.6 %. Then Genetic Algorithm is used to maximize the distillate production with the GPR model embedded in the optimization problem. The GPR-GA driven maximum distillate production is estimated on HWT = 70 ± 0.5 °C, FWT = 40 ± 2.5 °C, FFR-S1 = 6 ± 2.6 LPM, FFR-S2 = 7 ± 1 LPM and FFR-S3 = 7 ± 1. The ML-GA-based system analysis and optimization of the MED system can boost the distillate production that promotes operation excellence and circular economy from the desalination sector.
date: 2024-06
date_type: published
publisher: ELSEVIER
official_url: http://dx.doi.org/10.1016/j.jwpe.2024.105535
oa_status: green
full_text_type: pub
language: eng
primo: open
primo_central: open_green
verified: verified_manual
elements_id: 2283814
doi: 10.1016/j.jwpe.2024.105535
lyricists_name: Ashraf, Waqar
lyricists_id: WMAAS21
actors_name: Ashraf, Waqar
actors_id: WMAAS21
actors_role: owner
funding_acknowledgements: [Northumbria University UK]; [King Abdullah University of Science and Technology Saudi Arabia]; [International Desalination Associate (IDA) Fellowship]; LTRF2223-19-103 [RAEng/Leverhulme Trust Research Fellowships Scheme Tranche]; PEEF/CMMS/21/142 [Punjab Education Endowment Fund (PEEF)]
full_text_status: public
publication: Journal of Water Process Engineering
volume: 63
article_number: 105535
pages: 10
issn: 2214-7144
citation:        Ashraf, Waqar Muhammad;    Jamil, Muhammad Ahmad;    Uddin, Ghulam Moeen;    Shboul, Bashar;    Ishfaq, Kashif;    Ng, Kim Choon;    Dixon, Mike;         ... Shahzad, Muhammad Wakil; + view all <#>        Ashraf, Waqar Muhammad;  Jamil, Muhammad Ahmad;  Uddin, Ghulam Moeen;  Shboul, Bashar;  Ishfaq, Kashif;  Ng, Kim Choon;  Dixon, Mike;  Xu, Ben Bin;  Shahzad, Muhammad Wakil;   - view fewer <#>    (2024)    Machine learning assisted improved desalination pilot system design and experimentation for the circular economy.                   Journal of Water Process Engineering , 63     , Article 105535.  10.1016/j.jwpe.2024.105535 <https://doi.org/10.1016/j.jwpe.2024.105535>.       Green open access   
 
document_url: https://discovery.ucl.ac.uk/id/eprint/10196893/2/Ashraf_1-s2.0-S2214714424007670-main.pdf