TY  - INPR
AV  - public
EP  - 6
UR  - https://ieeexplore.ieee.org/Xplore/home.jsp
A1  - Gao, Zhong
A1  - Rossi, Alessandro
A1  - Sundharam, Yugesh
A1  - Li, Yuxiao
A1  - Ye, Zechen
A1  - Jiang, Haoran
A1  - Zhang, Siyuan
A1  - Asef, Pedram
A1  - Cai, Shun
N2  - This study advances the design of double stator switched reluctance machines (DSSRMs) by focusing on mitigating torque ripple to improve efficiency and promote broader application. The research undertakes a comprehensive literature review, establishes a baseline design, and employs iterative enhancements alongside advanced 2D and 3D model simulations using SolidWorks and ANSYS Maxwell software. Significant findings include a torque ripple reduction of up to 9%, an increase in peak torque, and optimised magnetic flux distribution, achieved through adjustments in rotor segment geometry and electromagnetic force balancing methods. The outcomes highlight the critical role of magnetic force analysis, 3D modelling, and dynamic testing in enhancing DSSRM performance, establishing a foundation for future optimisations in design and materials for environmental and operational sustainability.
KW  - electric machines
KW  -  switched reluctance machine
PB  - Institute of Electrical and Electronics Engineers (IEEE)
SP  - 1
ID  - discovery10196828
Y1  - 2024/11/01/
N1  - This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.
TI  - Torque Improvement for Modified Double Stator Switched Reluctance Machines
ER  -