eprintid: 10195423
rev_number: 7
eprint_status: archive
userid: 699
dir: disk0/10/19/54/23
datestamp: 2024-08-06 10:01:55
lastmod: 2024-08-06 10:01:55
status_changed: 2024-08-06 10:01:55
type: article
metadata_visibility: show
sword_depositor: 699
creators_name: Basha, Nausheen
creators_name: Arcucci, Rossella
creators_name: Angeli, Panagiota
creators_name: Anastasiou, Charitos
creators_name: Abadie, Thomas
creators_name: Casas, César Quilodrán
creators_name: Chen, Jianhua
creators_name: Cheng, Sibo
creators_name: Chagot, Loïc
creators_name: Galvanin, Federico
creators_name: Heaney, Claire E
creators_name: Hossein, Fria
creators_name: Hu, Jinwei
creators_name: Kovalchuk, Nina
creators_name: Kalli, Maria
creators_name: Kahouadji, Lyes
creators_name: Kerhouant, Morgan
creators_name: Lavino, Alessio
creators_name: Liang, Fuyue
creators_name: Nathanael, Konstantia
creators_name: Magri, Luca
creators_name: Lettieri, Paola
creators_name: Materazzi, Massimiliano
creators_name: Erigo, Matteo
creators_name: Pico, Paula
creators_name: Pain, Christopher C
creators_name: Shams, Mosayeb
creators_name: Simmons, Mark
creators_name: Traverso, Tullio
creators_name: Valdes, Juan Pablo
creators_name: Wolffs, Zef
creators_name: Zhu, Kewei
creators_name: Zhuang, Yilin
creators_name: Matar, Omar K
title: Machine learning and physics-driven modelling and simulation of multiphase systems
ispublished: pub
divisions: UCL
divisions: B04
divisions: F43
keywords: Machine Learning, 
Numerical simulations, 
Multiphase, 
Multi-fidelity, 
Microfluidics, 
Hybrid methods
note: Crown Copyright © 2024 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
abstract: We highlight the work of a multi-university collaborative programme, PREMIERE (PREdictive Modelling with QuantIfication of UncERtainty for MultiphasE Systems), which is at the intersection of multi-physics and machine learning, aiming to enhance predictive capabilities in complex multiphase flow systems across diverse length and time scales. Our contributions encompass a variety of approaches, including the Design of Experiments for nanoparticle synthesis optimisation, Generalised Latent Assimilation models for drop coalescence prediction, Bayesian regularised artificial neural networks, eXtreme Gradient Boosting for microdroplet formation prediction, and a sub-sampling based adversarial neural network for predicting slug flow behaviour in two-phase pipe flows. Additionally, we introduce a generalised latent assimilation technique, Long Short-Term Memory networks for sequence forecasting mixing performance in stirred and static mixers, active learning via Bayesian optimisation to recover coalescence model parameters for high current density electrolysers, Gaussian process regression for drop size distribution predictions for sprays, and acoustic emission signal inversion using gradient boosting machines to characterise particle size distribution in fluidised beds. We also offer perspectives on the development of a shape optimisation framework that leverages the use of a multi-fidelity multiphase emulator. The results presented have applications in chemical synthesis, microfluidics, product manufacturing, and green hydrogen generation.
date: 2024-09
date_type: published
publisher: Elsevier BV
official_url: https://doi.org/10.1016/j.ijmultiphaseflow.2024.104936
oa_status: green
full_text_type: pub
language: eng
primo: open
primo_central: open_green
verified: verified_manual
elements_id: 2302869
doi: 10.1016/j.ijmultiphaseflow.2024.104936
lyricists_name: Zhu, Kewei
lyricists_name: Angeli, Panagiota
lyricists_name: Hossein, Fria
lyricists_id: KZHUA89
lyricists_id: PANGE44
lyricists_id: FAHOS94
actors_name: Zhu, Kewei
actors_id: KZHUA89
actors_role: owner
full_text_status: public
publication: International Journal of Multiphase Flow
volume: 179
article_number: 104936
issn: 0301-9322
citation:        Basha, Nausheen;    Arcucci, Rossella;    Angeli, Panagiota;    Anastasiou, Charitos;    Abadie, Thomas;    Casas, César Quilodrán;    Chen, Jianhua;                                                                                                             ... Matar, Omar K; + view all <#>        Basha, Nausheen;  Arcucci, Rossella;  Angeli, Panagiota;  Anastasiou, Charitos;  Abadie, Thomas;  Casas, César Quilodrán;  Chen, Jianhua;  Cheng, Sibo;  Chagot, Loïc;  Galvanin, Federico;  Heaney, Claire E;  Hossein, Fria;  Hu, Jinwei;  Kovalchuk, Nina;  Kalli, Maria;  Kahouadji, Lyes;  Kerhouant, Morgan;  Lavino, Alessio;  Liang, Fuyue;  Nathanael, Konstantia;  Magri, Luca;  Lettieri, Paola;  Materazzi, Massimiliano;  Erigo, Matteo;  Pico, Paula;  Pain, Christopher C;  Shams, Mosayeb;  Simmons, Mark;  Traverso, Tullio;  Valdes, Juan Pablo;  Wolffs, Zef;  Zhu, Kewei;  Zhuang, Yilin;  Matar, Omar K;   - view fewer <#>    (2024)    Machine learning and physics-driven modelling and simulation of multiphase systems.                   International Journal of Multiphase Flow , 179     , Article 104936.  10.1016/j.ijmultiphaseflow.2024.104936 <https://doi.org/10.1016/j.ijmultiphaseflow.2024.104936>.       Green open access   
 
document_url: https://discovery.ucl.ac.uk/id/eprint/10195423/1/1-s2.0-S0301932224002131-main.pdf