%0 Journal Article %A Iyer, PP %A Prescott, S %A Addamane, S %A Jung, H %A Renteria, E %A Henshaw, J %A Mounce, A %A Luk, TS %A Mitrofanov, O %A Brener, I %D 2024 %F discovery:10192423 %I AMER CHEMICAL SOC %J Nano Letters %K quantum optics dielectric metasurfaces single-photon sources GaAs quantum dot %N 16 %P 4749-4757 %T Control of Quantized Spontaneous Emission from Single GaAs Quantum Dots Embedded in Huygens’ Metasurfaces %U https://discovery.ucl.ac.uk/id/eprint/10192423/ %V 24 %X Advancements in photonic quantum information systems (QIS) have driven the development of high-brightness, on-demand, and indistinguishable semiconductor epitaxial quantum dots (QDs) as single photon sources. Strain-free, monodisperse, and spatially sparse local-droplet-etched (LDE) QDs have recently been demonstrated as a superior alternative to traditional Stranski-Krastanov QDs. However, integration of LDE QDs into nanophotonic architectures with the ability to scale to many interacting QDs is yet to be demonstrated. We present a potential solution by embedding isolated LDE GaAs QDs within an Al0.4Ga0.6As Huygens’ metasurface with spectrally overlapping fundamental electric and magnetic dipolar resonances. We demonstrate for the first time a position- and size-independent, 1 order of magnitude increase in the collection efficiency and emission lifetime control for single-photon emission from LDE QDs embedded within the Huygens’ metasurfaces. Our results represent a significant step toward leveraging the advantages of LDE QDs within nanophotonic architectures to meet the scalability demands of photonic QIS. %Z This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.