<> <http://www.w3.org/2000/01/rdf-schema#comment> "The repository administrator has not yet configured an RDF license."^^<http://www.w3.org/2001/XMLSchema#string> .
<> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/10185865> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Thesis> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Article> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://purl.org/dc/terms/title> "Advancing Action Recognition through Artificial Intelligence: A Comprehensive Approach for Home Safety Monitoring using Skeleton Data and Spatial Temporal Graph Convolutional Neural Networks"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://purl.org/ontology/bibo/abstract> "Accidents resulting from falls are a pressing global concern, especially among the elderly, leading to fatalities, post-fall complications, and limitations in daily activities. Our work introduces an efficient action recognition system, with a primary focus on detecting falls in the fewest possible video frames. Instead of a relying in a single stage (e.g., the classification stage) to solve this issue, we break down the problem into smaller components to enhance the overall action recognition system's accuracy and efficiency.\r\n\r\nTo improve the representation of actions, we utilize skeleton data extracted from RGB images, employing the Spatial Temporal-Graph Convolutional Network. We used the BlazePose topology for action recognition for the first time in the state-of-the art. Moreover, we introduce the Enhanced-BlazePose topology. This innovative approach can represent the actions more accurately. On the other hand, to improve the convolution operation effectiveness, we introduce three new skeleton partitioning strategies: the full-distance, the connection and the index splits. These contributions enhance our ability to recognize human body actions.\r\n\r\nRecognizing that an abundance of features can hinder machine learning algorithms' performance, we incorporate a feature selection layer, utilizing the Stochastic Fractal Search-Guided Whale Optimization Algorithm (SFS-GWOA) to identify critical joint movements during activities. This feature selection not only enhances performance but also reduces computational costs and processing time. Furthermore, our Multi-Stream Graph Recurrent Neural Network architecture, featuring LSTM units, models spatio-temporal features of skeleton data effectively.\r\n\r\nOur methodologies and approaches are rigorously evaluated using datasets from restricted and non-restricted environments, demonstrating promising results. Benchmark datasets include NTU-RGB+D, MultiCamera Fall, UR Fall, Kinetics, UCF-101, and HMDB-51. These findings contribute to advancing the field of fall detection and ADL recognition, with practical implications for enhancing the well-being of older individuals living alone."^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://purl.org/dc/terms/date> "2024-01-28" .
<https://discovery.ucl.ac.uk/id/document/1684854> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Document> .
<https://discovery.ucl.ac.uk/id/org/ext-a64c3df5861c6582807add1abaadf2af> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Organization> .
<https://discovery.ucl.ac.uk/id/org/ext-a64c3df5861c6582807add1abaadf2af> <http://xmlns.com/foaf/0.1/name> "UCL (University College London)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://purl.org/dc/terms/issuer> <https://discovery.ucl.ac.uk/id/org/ext-a64c3df5861c6582807add1abaadf2af> .
<https://discovery.ucl.ac.uk/id/org/ext-b4deaa30b5b2a5224ec421d60322a070> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Organization> .
<https://discovery.ucl.ac.uk/id/org/ext-b4deaa30b5b2a5224ec421d60322a070> <http://xmlns.com/foaf/0.1/name> "Electronic & Electrical Engineering, UCL (University College London)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/org/ext-b4deaa30b5b2a5224ec421d60322a070> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/org/ext-a64c3df5861c6582807add1abaadf2af> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://purl.org/dc/terms/issuer> <https://discovery.ucl.ac.uk/id/org/ext-b4deaa30b5b2a5224ec421d60322a070> .
<https://discovery.ucl.ac.uk/id/org/ext-a64c3df5861c6582807add1abaadf2af> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/org/ext-b4deaa30b5b2a5224ec421d60322a070> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://purl.org/ontology/bibo/status> <http://purl.org/ontology/bibo/status/unpublished> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-19dc0affb6cfdb548168b4ddaa2e0c93> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10185865#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10185865#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_1> <https://discovery.ucl.ac.uk/id/person/ext-19dc0affb6cfdb548168b4ddaa2e0c93> .
<https://discovery.ucl.ac.uk/id/person/ext-19dc0affb6cfdb548168b4ddaa2e0c93> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-19dc0affb6cfdb548168b4ddaa2e0c93> <http://xmlns.com/foaf/0.1/givenName> "Motasem"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-19dc0affb6cfdb548168b4ddaa2e0c93> <http://xmlns.com/foaf/0.1/familyName> "Alsawadi"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-19dc0affb6cfdb548168b4ddaa2e0c93> <http://xmlns.com/foaf/0.1/name> "Motasem Alsawadi"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/EPrint> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/ThesisEPrint> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/repository> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1684854> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1684854> <http://www.w3.org/2000/01/rdf-schema#label> "Advancing Action Recognition through Artificial Intelligence: A Comprehensive Approach for Home Safety Monitoring using Skeleton Data and Spatial Temporal Graph Convolutional Neural Networks (Text)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1684854> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10185865/3/Alsawadi_10185865_Thesis.pdf> .
<https://discovery.ucl.ac.uk/id/document/1684854> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10185865/3/Alsawadi_10185865_Thesis.pdf> .
<https://discovery.ucl.ac.uk/id/eprint/10185865/3/Alsawadi_10185865_Thesis.pdf> <http://www.w3.org/2000/01/rdf-schema#label> "Alsawadi_10185865_Thesis.pdf"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1690012> .
<https://discovery.ucl.ac.uk/id/document/1690012> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1690012> <http://www.w3.org/2000/01/rdf-schema#label> "Advancing Action Recognition through Artificial Intelligence: A Comprehensive Approach for Home Safety Monitoring using Skeleton Data and Spatial Temporal Graph Convolutional Neural Networks (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1690012> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1690012> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1690012> <http://eprints.org/relation/islightboxThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1690013> .
<https://discovery.ucl.ac.uk/id/document/1690013> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1690013> <http://www.w3.org/2000/01/rdf-schema#label> "Advancing Action Recognition through Artificial Intelligence: A Comprehensive Approach for Home Safety Monitoring using Skeleton Data and Spatial Temporal Graph Convolutional Neural Networks (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1690013> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1690013> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1690013> <http://eprints.org/relation/ispreviewThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1690014> .
<https://discovery.ucl.ac.uk/id/document/1690014> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1690014> <http://www.w3.org/2000/01/rdf-schema#label> "Advancing Action Recognition through Artificial Intelligence: A Comprehensive Approach for Home Safety Monitoring using Skeleton Data and Spatial Temporal Graph Convolutional Neural Networks (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1690014> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1690014> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1690014> <http://eprints.org/relation/ismediumThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1690015> .
<https://discovery.ucl.ac.uk/id/document/1690015> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1690015> <http://www.w3.org/2000/01/rdf-schema#label> "Advancing Action Recognition through Artificial Intelligence: A Comprehensive Approach for Home Safety Monitoring using Skeleton Data and Spatial Temporal Graph Convolutional Neural Networks (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1690015> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1690015> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1690015> <http://eprints.org/relation/issmallThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1690122> .
<https://discovery.ucl.ac.uk/id/document/1690122> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1690122> <http://www.w3.org/2000/01/rdf-schema#label> "Advancing Action Recognition through Artificial Intelligence: A Comprehensive Approach for Home Safety Monitoring using Skeleton Data and Spatial Temporal Graph Convolutional Neural Networks (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1690122> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1690122> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/document/1690122> <http://eprints.org/relation/isIndexCodesVersionOf> <https://discovery.ucl.ac.uk/id/document/1684854> .
<https://discovery.ucl.ac.uk/id/eprint/10185865> <http://www.w3.org/2000/01/rdf-schema#seeAlso> <https://discovery.ucl.ac.uk/id/eprint/10185865/> .
<https://discovery.ucl.ac.uk/id/eprint/10185865/> <http://purl.org/dc/elements/1.1/title> "HTML Summary of #10185865 \n\nAdvancing Action Recognition through Artificial Intelligence: A Comprehensive Approach for Home Safety Monitoring using Skeleton Data and Spatial Temporal Graph Convolutional Neural Networks\n\n" .
<https://discovery.ucl.ac.uk/id/eprint/10185865/> <http://purl.org/dc/elements/1.1/format> "text/html" .
<https://discovery.ucl.ac.uk/id/eprint/10185865/> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/10185865> .