<> <http://www.w3.org/2000/01/rdf-schema#comment> "The repository administrator has not yet configured an RDF license."^^<http://www.w3.org/2001/XMLSchema#string> . <> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/10185732> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/AcademicArticle> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Article> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/dc/terms/title> "A robust autoregressive long-term spatiotemporal forecasting framework for surrogate-based turbulent combustion modeling via deep learning"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/ontology/bibo/abstract> "This paper systematically develops a high-fidelity turbulent combustion surrogate model using deep learning. We construct a surrogate model to simulate the turbulent combustion process in real time, based on a state-of-the-art spatiotemporal forecasting neural network. To address the issue of shifted distribution in autoregressive long-term prediction, two training techniques are proposed: unrolled training and injecting noise training. These techniques significantly improve the stability and robustness of the model. Two datasets of turbulent combustion in a combustor with cavity and a vitiated co-flow burner (Cabra burner) have been generated for model validation. The effects of model architecture, unrolled time, noise amplitude, and training dataset size on the long-term predictive performance are explored. The well-trained model can be applicable to new cases by extrapolation and give spatially and temporally consistent results in long-term predictions for turbulent reacting flows that are highly unsteady."^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/dc/terms/date> "2024-01" . <https://discovery.ucl.ac.uk/id/document/1684652> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Document> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/ontology/bibo/volume> "15" . <https://discovery.ucl.ac.uk/id/org/ext-464ff5f0fac4572c5372d3e7fc978be1> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Organization> . <https://discovery.ucl.ac.uk/id/org/ext-464ff5f0fac4572c5372d3e7fc978be1> <http://xmlns.com/foaf/0.1/name> "Elsevier BV"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/dc/terms/publisher> <https://discovery.ucl.ac.uk/id/org/ext-464ff5f0fac4572c5372d3e7fc978be1> . <https://discovery.ucl.ac.uk/id/publication/ext-26665468> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Collection> . <https://discovery.ucl.ac.uk/id/publication/ext-26665468> <http://xmlns.com/foaf/0.1/name> "Energy and AI"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/publication/ext-26665468> . <https://discovery.ucl.ac.uk/id/publication/ext-26665468> <http://www.w3.org/2002/07/owl#sameAs> <urn:issn:26665468> . <https://discovery.ucl.ac.uk/id/publication/ext-26665468> <http://purl.org/ontology/bibo/issn> "26665468" . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/ontology/bibo/status> <http://purl.org/ontology/bibo/status/published> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-fcd78640d59dc5db81aeba6aca7ef0dd> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10185732#authors> . <https://discovery.ucl.ac.uk/id/eprint/10185732#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_1> <https://discovery.ucl.ac.uk/id/person/ext-fcd78640d59dc5db81aeba6aca7ef0dd> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-35dd532e2e356f7e00f718972a571120> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10185732#authors> . <https://discovery.ucl.ac.uk/id/eprint/10185732#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_2> <https://discovery.ucl.ac.uk/id/person/ext-35dd532e2e356f7e00f718972a571120> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-266742a3f5a3eecea129b0a4baa4f402> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10185732#authors> . <https://discovery.ucl.ac.uk/id/eprint/10185732#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_3> <https://discovery.ucl.ac.uk/id/person/ext-266742a3f5a3eecea129b0a4baa4f402> . <https://discovery.ucl.ac.uk/id/person/ext-fcd78640d59dc5db81aeba6aca7ef0dd> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> . <https://discovery.ucl.ac.uk/id/person/ext-fcd78640d59dc5db81aeba6aca7ef0dd> <http://xmlns.com/foaf/0.1/givenName> "Sipei"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-fcd78640d59dc5db81aeba6aca7ef0dd> <http://xmlns.com/foaf/0.1/familyName> "Wu"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-fcd78640d59dc5db81aeba6aca7ef0dd> <http://xmlns.com/foaf/0.1/name> "Sipei Wu"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-266742a3f5a3eecea129b0a4baa4f402> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> . <https://discovery.ucl.ac.uk/id/person/ext-266742a3f5a3eecea129b0a4baa4f402> <http://xmlns.com/foaf/0.1/givenName> "Kai Hong"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-266742a3f5a3eecea129b0a4baa4f402> <http://xmlns.com/foaf/0.1/familyName> "Luo"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-266742a3f5a3eecea129b0a4baa4f402> <http://xmlns.com/foaf/0.1/name> "Kai Hong Luo"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-35dd532e2e356f7e00f718972a571120> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> . <https://discovery.ucl.ac.uk/id/person/ext-35dd532e2e356f7e00f718972a571120> <http://xmlns.com/foaf/0.1/givenName> "Haiou"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-35dd532e2e356f7e00f718972a571120> <http://xmlns.com/foaf/0.1/familyName> "Wang"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/person/ext-35dd532e2e356f7e00f718972a571120> <http://xmlns.com/foaf/0.1/name> "Haiou Wang"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/EPrint> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/ArticleEPrint> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/repository> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1684652> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> . <https://discovery.ucl.ac.uk/id/document/1684652> <http://www.w3.org/2000/01/rdf-schema#label> "A robust autoregressive long-term spatiotemporal forecasting framework for surrogate-based turbulent combustion modeling via deep learning (Text)"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://purl.org/dc/elements/1.1/hasVersion> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://eprints.org/ontology/hasPublished> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1684652> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10185732/1/1-s2.0-S2666546823001052-main.pdf> . <https://discovery.ucl.ac.uk/id/document/1684652> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10185732/1/1-s2.0-S2666546823001052-main.pdf> . <https://discovery.ucl.ac.uk/id/eprint/10185732/1/1-s2.0-S2666546823001052-main.pdf> <http://www.w3.org/2000/01/rdf-schema#label> "1-s2.0-S2666546823001052-main.pdf"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1690801> . <https://discovery.ucl.ac.uk/id/document/1690801> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> . <https://discovery.ucl.ac.uk/id/document/1690801> <http://www.w3.org/2000/01/rdf-schema#label> "A robust autoregressive long-term spatiotemporal forecasting framework for surrogate-based turbulent combustion modeling via deep learning (Other)"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/document/1690801> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690801> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690801> <http://eprints.org/relation/isIndexCodesVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690801> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10185732/2/indexcodes.txt> . <https://discovery.ucl.ac.uk/id/document/1690801> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10185732/2/indexcodes.txt> . <https://discovery.ucl.ac.uk/id/eprint/10185732/2/indexcodes.txt> <http://www.w3.org/2000/01/rdf-schema#label> "indexcodes.txt"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1690802> . <https://discovery.ucl.ac.uk/id/document/1690802> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> . <https://discovery.ucl.ac.uk/id/document/1690802> <http://www.w3.org/2000/01/rdf-schema#label> "A robust autoregressive long-term spatiotemporal forecasting framework for surrogate-based turbulent combustion modeling via deep learning (Other)"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/document/1690802> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690802> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690802> <http://eprints.org/relation/islightboxThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690802> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10185732/3/lightbox.jpg> . <https://discovery.ucl.ac.uk/id/document/1690802> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10185732/3/lightbox.jpg> . <https://discovery.ucl.ac.uk/id/eprint/10185732/3/lightbox.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "lightbox.jpg"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1690803> . <https://discovery.ucl.ac.uk/id/document/1690803> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> . <https://discovery.ucl.ac.uk/id/document/1690803> <http://www.w3.org/2000/01/rdf-schema#label> "A robust autoregressive long-term spatiotemporal forecasting framework for surrogate-based turbulent combustion modeling via deep learning (Other)"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/document/1690803> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690803> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690803> <http://eprints.org/relation/ispreviewThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690803> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10185732/4/preview.jpg> . <https://discovery.ucl.ac.uk/id/document/1690803> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10185732/4/preview.jpg> . <https://discovery.ucl.ac.uk/id/eprint/10185732/4/preview.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "preview.jpg"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1690804> . <https://discovery.ucl.ac.uk/id/document/1690804> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> . <https://discovery.ucl.ac.uk/id/document/1690804> <http://www.w3.org/2000/01/rdf-schema#label> "A robust autoregressive long-term spatiotemporal forecasting framework for surrogate-based turbulent combustion modeling via deep learning (Other)"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/document/1690804> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690804> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690804> <http://eprints.org/relation/ismediumThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690804> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10185732/5/medium.jpg> . <https://discovery.ucl.ac.uk/id/document/1690804> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10185732/5/medium.jpg> . <https://discovery.ucl.ac.uk/id/eprint/10185732/5/medium.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "medium.jpg"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1690805> . <https://discovery.ucl.ac.uk/id/document/1690805> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> . <https://discovery.ucl.ac.uk/id/document/1690805> <http://www.w3.org/2000/01/rdf-schema#label> "A robust autoregressive long-term spatiotemporal forecasting framework for surrogate-based turbulent combustion modeling via deep learning (Other)"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/document/1690805> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690805> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690805> <http://eprints.org/relation/issmallThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1684652> . <https://discovery.ucl.ac.uk/id/document/1690805> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10185732/6/small.jpg> . <https://discovery.ucl.ac.uk/id/document/1690805> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10185732/6/small.jpg> . <https://discovery.ucl.ac.uk/id/eprint/10185732/6/small.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "small.jpg"^^<http://www.w3.org/2001/XMLSchema#string> . <https://discovery.ucl.ac.uk/id/eprint/10185732> <http://www.w3.org/2000/01/rdf-schema#seeAlso> <https://discovery.ucl.ac.uk/id/eprint/10185732/> . <https://discovery.ucl.ac.uk/id/eprint/10185732/> <http://purl.org/dc/elements/1.1/title> "HTML Summary of #10185732 \n\nA robust autoregressive long-term spatiotemporal forecasting framework for surrogate-based turbulent combustion modeling via deep learning\n\n" . <https://discovery.ucl.ac.uk/id/eprint/10185732/> <http://purl.org/dc/elements/1.1/format> "text/html" . <https://discovery.ucl.ac.uk/id/eprint/10185732/> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/10185732> .