@article{discovery10177066, volume = {381}, year = {2023}, title = {Explorations in Subexponential Non-associative Non-commutative Linear Logic}, note = {{\copyright} Blaisdell, Kanovich, Kuznetsov, Pimentel, Scedrov. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).}, publisher = {Open Publishing Association}, booktitle = {Electronic Proceedings in Theoretical Computer Science}, journal = {Electronic Proceedings in Theoretical Computer Science}, pages = {4--19}, issn = {2075-2180}, author = {Blaisdell, Eben and Kanovich, Max and Kuznetsov, Stepan L and Pimentel, Elaine and Scedrov, Andre}, url = {http://doi.org/10.4204/eptcs.381.3}, abstract = {In a previous work we introduced a non-associative non-commutative logic extended by multimodalities, called subexponentials, licensing local application of structural rules. Here, we further explore this system, exhibiting a classical one-sided multi-succedent classical analogue of our intuitionistic system, following the exponential-free calculi of Buszkowski, and de Groote, Lamarche. A large fragment of the intuitionistic calculus is shown to embed faithfully into the classical fragment.} }