<> <http://www.w3.org/2000/01/rdf-schema#comment> "The repository administrator has not yet configured an RDF license."^^<http://www.w3.org/2001/XMLSchema#string> .
<> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/10160498> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/AcademicArticle> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Article> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/dc/terms/title> "Model theory of monadic predicate logic with the infinity quantifier"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/ontology/bibo/abstract> "This paper establishes model-theoretic properties of ME∞, a variation of monadic first-order logic that features the generalised quantifier ∃ ∞ (‘there are infinitely many’). We will also prove analogous versions of these results in the simpler setting of monadic first-order logic with and without equality (ME and M, respectively). For each logic L∈ { M, ME, ME∞} we will show the following. We provide syntactically defined fragments of L characterising four different semantic properties of L-sentences: (1) being monotone and (2) (Scott) continuous in a given set of monadic predicates; (3) having truth preserved under taking submodels or (4) being truth invariant under taking quotients. In each case, we produce an effectively defined map that translates an arbitrary sentence φ to a sentence φp belonging to the corresponding syntactic fragment, with the property that φ is equivalent to φp precisely when it has the associated semantic property. As a corollary of our developments, we obtain that the four semantic properties above are decidable for L-sentences."^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/dc/terms/date> "2021-10-27" .
<https://discovery.ucl.ac.uk/id/document/1517550> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Document> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/ontology/bibo/volume> "61" .
<https://discovery.ucl.ac.uk/id/org/ext-9fda52d9214c90d0b9b27e191441f372> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Organization> .
<https://discovery.ucl.ac.uk/id/org/ext-9fda52d9214c90d0b9b27e191441f372> <http://xmlns.com/foaf/0.1/name> "SPRINGER HEIDELBERG"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/dc/terms/publisher> <https://discovery.ucl.ac.uk/id/org/ext-9fda52d9214c90d0b9b27e191441f372> .
<https://discovery.ucl.ac.uk/id/publication/ext-09335846> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Collection> .
<https://discovery.ucl.ac.uk/id/publication/ext-09335846> <http://xmlns.com/foaf/0.1/name> "Archive for Mathematical Logic"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/publication/ext-09335846> .
<https://discovery.ucl.ac.uk/id/publication/ext-09335846> <http://www.w3.org/2002/07/owl#sameAs> <urn:issn:09335846> .
<https://discovery.ucl.ac.uk/id/publication/ext-09335846> <http://purl.org/ontology/bibo/issn> "09335846" .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/ontology/bibo/status> <http://purl.org/ontology/bibo/status/published> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-538fcb66e8c9dfeea9374694ba0a582d> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10160498#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10160498#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_1> <https://discovery.ucl.ac.uk/id/person/ext-538fcb66e8c9dfeea9374694ba0a582d> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-3cb3d8f42797fae336f97b4afd658009> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10160498#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10160498#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_2> <https://discovery.ucl.ac.uk/id/person/ext-3cb3d8f42797fae336f97b4afd658009> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-fa646f758b21a1e569145ed7901d1b2d> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10160498#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10160498#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_3> <https://discovery.ucl.ac.uk/id/person/ext-fa646f758b21a1e569145ed7901d1b2d> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-4205b34018e6cbe328092330bfe113e3> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10160498#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10160498#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_4> <https://discovery.ucl.ac.uk/id/person/ext-4205b34018e6cbe328092330bfe113e3> .
<https://discovery.ucl.ac.uk/id/person/ext-4205b34018e6cbe328092330bfe113e3> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-4205b34018e6cbe328092330bfe113e3> <http://xmlns.com/foaf/0.1/givenName> "Fabio"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-4205b34018e6cbe328092330bfe113e3> <http://xmlns.com/foaf/0.1/familyName> "Zanasi"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-4205b34018e6cbe328092330bfe113e3> <http://xmlns.com/foaf/0.1/name> "Fabio Zanasi"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-fa646f758b21a1e569145ed7901d1b2d> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-fa646f758b21a1e569145ed7901d1b2d> <http://xmlns.com/foaf/0.1/givenName> "Yde"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-fa646f758b21a1e569145ed7901d1b2d> <http://xmlns.com/foaf/0.1/familyName> "Venema"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-fa646f758b21a1e569145ed7901d1b2d> <http://xmlns.com/foaf/0.1/name> "Yde Venema"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-538fcb66e8c9dfeea9374694ba0a582d> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-538fcb66e8c9dfeea9374694ba0a582d> <http://xmlns.com/foaf/0.1/givenName> "Facundo"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-538fcb66e8c9dfeea9374694ba0a582d> <http://xmlns.com/foaf/0.1/familyName> "Carreiro"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-538fcb66e8c9dfeea9374694ba0a582d> <http://xmlns.com/foaf/0.1/name> "Facundo Carreiro"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-3cb3d8f42797fae336f97b4afd658009> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-3cb3d8f42797fae336f97b4afd658009> <http://xmlns.com/foaf/0.1/givenName> "Alessandro"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-3cb3d8f42797fae336f97b4afd658009> <http://xmlns.com/foaf/0.1/familyName> "Facchini"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-3cb3d8f42797fae336f97b4afd658009> <http://xmlns.com/foaf/0.1/name> "Alessandro Facchini"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/EPrint> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/ArticleEPrint> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/repository> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1517550> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1517550> <http://www.w3.org/2000/01/rdf-schema#label> "Model theory of monadic predicate logic with the infinity quantifier (Text)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://purl.org/dc/elements/1.1/hasVersion> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://eprints.org/ontology/hasAccepted> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1517550> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10160498/1/s00153-021-00797-0.pdf> .
<https://discovery.ucl.ac.uk/id/document/1517550> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10160498/1/s00153-021-00797-0.pdf> .
<https://discovery.ucl.ac.uk/id/eprint/10160498/1/s00153-021-00797-0.pdf> <http://www.w3.org/2000/01/rdf-schema#label> "s00153-021-00797-0.pdf"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1574877> .
<https://discovery.ucl.ac.uk/id/document/1574877> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1574877> <http://www.w3.org/2000/01/rdf-schema#label> "Model theory of monadic predicate logic with the infinity quantifier (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1574877> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574877> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574877> <http://eprints.org/relation/isIndexCodesVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574877> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10160498/2/indexcodes.txt> .
<https://discovery.ucl.ac.uk/id/document/1574877> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10160498/2/indexcodes.txt> .
<https://discovery.ucl.ac.uk/id/eprint/10160498/2/indexcodes.txt> <http://www.w3.org/2000/01/rdf-schema#label> "indexcodes.txt"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1574878> .
<https://discovery.ucl.ac.uk/id/document/1574878> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1574878> <http://www.w3.org/2000/01/rdf-schema#label> "Model theory of monadic predicate logic with the infinity quantifier (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1574878> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574878> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574878> <http://eprints.org/relation/islightboxThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574878> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10160498/3/lightbox.jpg> .
<https://discovery.ucl.ac.uk/id/document/1574878> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10160498/3/lightbox.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10160498/3/lightbox.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "lightbox.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1574879> .
<https://discovery.ucl.ac.uk/id/document/1574879> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1574879> <http://www.w3.org/2000/01/rdf-schema#label> "Model theory of monadic predicate logic with the infinity quantifier (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1574879> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574879> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574879> <http://eprints.org/relation/ispreviewThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574879> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10160498/4/preview.jpg> .
<https://discovery.ucl.ac.uk/id/document/1574879> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10160498/4/preview.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10160498/4/preview.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "preview.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1574880> .
<https://discovery.ucl.ac.uk/id/document/1574880> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1574880> <http://www.w3.org/2000/01/rdf-schema#label> "Model theory of monadic predicate logic with the infinity quantifier (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1574880> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574880> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574880> <http://eprints.org/relation/ismediumThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574880> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10160498/5/medium.jpg> .
<https://discovery.ucl.ac.uk/id/document/1574880> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10160498/5/medium.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10160498/5/medium.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "medium.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1574881> .
<https://discovery.ucl.ac.uk/id/document/1574881> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1574881> <http://www.w3.org/2000/01/rdf-schema#label> "Model theory of monadic predicate logic with the infinity quantifier (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1574881> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574881> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574881> <http://eprints.org/relation/issmallThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1517550> .
<https://discovery.ucl.ac.uk/id/document/1574881> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10160498/6/small.jpg> .
<https://discovery.ucl.ac.uk/id/document/1574881> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10160498/6/small.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10160498/6/small.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "small.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10160498> <http://www.w3.org/2000/01/rdf-schema#seeAlso> <https://discovery.ucl.ac.uk/id/eprint/10160498/> .
<https://discovery.ucl.ac.uk/id/eprint/10160498/> <http://purl.org/dc/elements/1.1/title> "HTML Summary of #10160498 \n\nModel theory of monadic predicate logic with the infinity quantifier\n\n" .
<https://discovery.ucl.ac.uk/id/eprint/10160498/> <http://purl.org/dc/elements/1.1/format> "text/html" .
<https://discovery.ucl.ac.uk/id/eprint/10160498/> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/10160498> .