TY  - JOUR
N2  - Nitrogen (N) and sulfur (S) in ginkgo leaves are converted to carbon lattice heteroatoms, making them a matrix. Herein, cobalt phosphide (CoP) is loaded on the N/S/phosphorus (P) co-doped carbon matrix (CoP@NSPC) via the carbothermic reduction method using the ginkgo leave-based carbon as the precursor. The N/P co-doped carbon matrix loaded with CoP (CoP@NPC) are also prepared using glucose-based carbon as the support. Effects of intrinsic heteroatoms from ginkgo leaves are revealed through X-ray photoelectron spectroscopy (XPS) and ultraviolet photo-electron spectroscopy (UPS) compared with CoP@NPC. The N/S heteroatoms accelerate the electron transfer and adjust the d-band center of CoP@NSPC, thus causing a faster electrocatalytic process. The as-obtained CoP@NSPC exhibits excellent activity toward hydrogen evolution reaction (HER, 160 mV @ 10 mA cm?2) and oxygen evolution reaction (OER, 198 mV @ 10 mA cm?2). The assembly feasibility and catalytic performance are further verified in overall water splitting and exhibits high efficiency and long durability of CoP@NSPC.
VL  - 333
PB  - Elsevier BV
Y1  - 2023/02//
A1  - Wang, Qichang
A1  - Yu, Ran
A1  - Shen, Dekui
A1  - Liu, Qian
A1  - Hong Luo, Kai
A1  - Wu, Chunfei
A1  - Gu, Sai
ID  - discovery10158913
N1  - This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.
JF  - Fuel
AV  - public
UR  - https://doi.org/10.1016/j.fuel.2022.126368
TI  - Performance of intrinsic heteroatoms in cobalt phosphide loaded ginkgo leave-based carbon material on promoting the electrocatalytic activity during hydrogen evolution reaction and oxygen evolution reaction
KW  - Ginkgo leaves
KW  -  Nitrogen/sulfur/phosphorus co-doped carbon
KW  -  Cobalt phosphide
KW  -  D-band
KW  -  Water splitting
ER  -