<> <http://www.w3.org/2000/01/rdf-schema#comment> "The repository administrator has not yet configured an RDF license."^^<http://www.w3.org/2001/XMLSchema#string> .
<> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/10142552> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/AcademicArticle> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Article> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/dc/terms/title> "Forecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/ontology/bibo/abstract> "Off-grid technologies, such as solar home systems (SHS), offer the opportunity to alleviate global energy poverty, providing a cost-effective alternative to an electricity grid connection. However, there is a paucity of high-quality SHS electricity usage data and thus a limited understanding of consumers’ past and future usage patterns. This study addresses this gap by providing a rare large-scale analysis of real-time energy consumption data for SHS customers (n = 63,299) in Rwanda. Our results show that 70% of SHS users’ electricity usage decreased a year after their SHS was installed. This paper is novel in its application of a three-dimensional convolutional neural network (CNN) architecture for electricity load forecasting using time series data. It also marks the first time a CNN was used to predict SHS customers’ electricity consumption. The model forecasts individual households’ usage 24 h and seven days ahead, as well as an average week across the next three months. The last scenario derived the best performance with a mean squared error of 0.369. SHS companies could use these predictions to offer a tailored service to customers, including providing feedback information on their likely future usage and expenditure. The CNN could also aid load balancing for SHS based microgrids."^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/dc/terms/date> "2022-02-01" .
<https://discovery.ucl.ac.uk/id/document/1437281> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Document> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/ontology/bibo/volume> "15" .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/ontology/bibo/issue> "3" .
<https://discovery.ucl.ac.uk/id/org/ext-16a556591fc6878b9a1e5626e5d3b570> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Organization> .
<https://discovery.ucl.ac.uk/id/org/ext-16a556591fc6878b9a1e5626e5d3b570> <http://xmlns.com/foaf/0.1/name> "MDPI AG"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/dc/terms/publisher> <https://discovery.ucl.ac.uk/id/org/ext-16a556591fc6878b9a1e5626e5d3b570> .
<https://discovery.ucl.ac.uk/id/publication/ext-637d5ea14d5e9905c3958f5e6c6a3b8b> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://purl.org/ontology/bibo/Collection> .
<https://discovery.ucl.ac.uk/id/publication/ext-637d5ea14d5e9905c3958f5e6c6a3b8b> <http://xmlns.com/foaf/0.1/name> "Energies"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/publication/ext-637d5ea14d5e9905c3958f5e6c6a3b8b> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/ontology/bibo/status> <http://purl.org/ontology/bibo/status/published> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-ec6b08f3ecde0d8d26f6e3e90f7a00a0> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10142552#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10142552#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_1> <https://discovery.ucl.ac.uk/id/person/ext-ec6b08f3ecde0d8d26f6e3e90f7a00a0> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-6d8463d49da44de945cb6c6884914f9d> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10142552#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10142552#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_2> <https://discovery.ucl.ac.uk/id/person/ext-6d8463d49da44de945cb6c6884914f9d> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-7fd8dbed8f4caf1c1756e825a81f7fcc> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10142552#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10142552#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_3> <https://discovery.ucl.ac.uk/id/person/ext-7fd8dbed8f4caf1c1756e825a81f7fcc> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/dc/terms/creator> <https://discovery.ucl.ac.uk/id/person/ext-19642c52bff158e10e744cef0cdb62e4> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/ontology/bibo/authorList> <https://discovery.ucl.ac.uk/id/eprint/10142552#authors> .
<https://discovery.ucl.ac.uk/id/eprint/10142552#authors> <http://www.w3.org/1999/02/22-rdf-syntax-ns#_4> <https://discovery.ucl.ac.uk/id/person/ext-19642c52bff158e10e744cef0cdb62e4> .
<https://discovery.ucl.ac.uk/id/person/ext-19642c52bff158e10e744cef0cdb62e4> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-19642c52bff158e10e744cef0cdb62e4> <http://xmlns.com/foaf/0.1/givenName> "P"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-19642c52bff158e10e744cef0cdb62e4> <http://xmlns.com/foaf/0.1/familyName> "Parikh"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-19642c52bff158e10e744cef0cdb62e4> <http://xmlns.com/foaf/0.1/name> "P Parikh"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-ec6b08f3ecde0d8d26f6e3e90f7a00a0> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-ec6b08f3ecde0d8d26f6e3e90f7a00a0> <http://xmlns.com/foaf/0.1/givenName> "V"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-ec6b08f3ecde0d8d26f6e3e90f7a00a0> <http://xmlns.com/foaf/0.1/familyName> "Kizilcec"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-ec6b08f3ecde0d8d26f6e3e90f7a00a0> <http://xmlns.com/foaf/0.1/name> "V Kizilcec"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-6d8463d49da44de945cb6c6884914f9d> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-6d8463d49da44de945cb6c6884914f9d> <http://xmlns.com/foaf/0.1/givenName> "C"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-6d8463d49da44de945cb6c6884914f9d> <http://xmlns.com/foaf/0.1/familyName> "Spataru"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-6d8463d49da44de945cb6c6884914f9d> <http://xmlns.com/foaf/0.1/name> "C Spataru"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-7fd8dbed8f4caf1c1756e825a81f7fcc> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<https://discovery.ucl.ac.uk/id/person/ext-7fd8dbed8f4caf1c1756e825a81f7fcc> <http://xmlns.com/foaf/0.1/givenName> "A"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-7fd8dbed8f4caf1c1756e825a81f7fcc> <http://xmlns.com/foaf/0.1/familyName> "Lipani"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/person/ext-7fd8dbed8f4caf1c1756e825a81f7fcc> <http://xmlns.com/foaf/0.1/name> "A Lipani"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/EPrint> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/ArticleEPrint> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/dc/terms/isPartOf> <https://discovery.ucl.ac.uk/id/repository> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437281> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1437281> <http://www.w3.org/2000/01/rdf-schema#label> "Forecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access (Text)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://purl.org/dc/elements/1.1/hasVersion> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://eprints.org/ontology/hasPublished> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437281> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10142552/1/energies-15-00857.pdf> .
<https://discovery.ucl.ac.uk/id/document/1437281> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10142552/1/energies-15-00857.pdf> .
<https://discovery.ucl.ac.uk/id/eprint/10142552/1/energies-15-00857.pdf> <http://www.w3.org/2000/01/rdf-schema#label> "energies-15-00857.pdf"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1437282> .
<https://discovery.ucl.ac.uk/id/document/1437282> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1437282> <http://www.w3.org/2000/01/rdf-schema#label> "Forecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1437282> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437282> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437282> <http://eprints.org/relation/islightboxThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437282> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10142552/2/lightbox.jpg> .
<https://discovery.ucl.ac.uk/id/document/1437282> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10142552/2/lightbox.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10142552/2/lightbox.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "lightbox.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1437283> .
<https://discovery.ucl.ac.uk/id/document/1437283> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1437283> <http://www.w3.org/2000/01/rdf-schema#label> "Forecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1437283> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437283> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437283> <http://eprints.org/relation/ispreviewThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437283> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10142552/3/preview.jpg> .
<https://discovery.ucl.ac.uk/id/document/1437283> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10142552/3/preview.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10142552/3/preview.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "preview.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1437284> .
<https://discovery.ucl.ac.uk/id/document/1437284> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1437284> <http://www.w3.org/2000/01/rdf-schema#label> "Forecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1437284> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437284> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437284> <http://eprints.org/relation/ismediumThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437284> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10142552/4/medium.jpg> .
<https://discovery.ucl.ac.uk/id/document/1437284> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10142552/4/medium.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10142552/4/medium.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "medium.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1437285> .
<https://discovery.ucl.ac.uk/id/document/1437285> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1437285> <http://www.w3.org/2000/01/rdf-schema#label> "Forecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1437285> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437285> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437285> <http://eprints.org/relation/issmallThumbnailVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437285> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10142552/5/small.jpg> .
<https://discovery.ucl.ac.uk/id/document/1437285> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10142552/5/small.jpg> .
<https://discovery.ucl.ac.uk/id/eprint/10142552/5/small.jpg> <http://www.w3.org/2000/01/rdf-schema#label> "small.jpg"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://eprints.org/ontology/hasDocument> <https://discovery.ucl.ac.uk/id/document/1437286> .
<https://discovery.ucl.ac.uk/id/document/1437286> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://eprints.org/ontology/Document> .
<https://discovery.ucl.ac.uk/id/document/1437286> <http://www.w3.org/2000/01/rdf-schema#label> "Forecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access (Other)"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/document/1437286> <http://eprints.org/relation/isVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437286> <http://eprints.org/relation/isVolatileVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437286> <http://eprints.org/relation/isIndexCodesVersionOf> <https://discovery.ucl.ac.uk/id/document/1437281> .
<https://discovery.ucl.ac.uk/id/document/1437286> <http://eprints.org/ontology/hasFile> <https://discovery.ucl.ac.uk/id/eprint/10142552/6/indexcodes.txt> .
<https://discovery.ucl.ac.uk/id/document/1437286> <http://purl.org/dc/terms/hasPart> <https://discovery.ucl.ac.uk/id/eprint/10142552/6/indexcodes.txt> .
<https://discovery.ucl.ac.uk/id/eprint/10142552/6/indexcodes.txt> <http://www.w3.org/2000/01/rdf-schema#label> "indexcodes.txt"^^<http://www.w3.org/2001/XMLSchema#string> .
<https://discovery.ucl.ac.uk/id/eprint/10142552> <http://www.w3.org/2000/01/rdf-schema#seeAlso> <https://discovery.ucl.ac.uk/id/eprint/10142552/> .
<https://discovery.ucl.ac.uk/id/eprint/10142552/> <http://purl.org/dc/elements/1.1/title> "HTML Summary of #10142552 \n\nForecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access\n\n" .
<https://discovery.ucl.ac.uk/id/eprint/10142552/> <http://purl.org/dc/elements/1.1/format> "text/html" .
<https://discovery.ucl.ac.uk/id/eprint/10142552/> <http://xmlns.com/foaf/0.1/primaryTopic> <https://discovery.ucl.ac.uk/id/eprint/10142552> .