TY  - JOUR
PB  - MDPI AG
JF  - Applied Sciences
VL  - 11
TI  - Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications
N1  - This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
ID  - discovery10130393
UR  - https://doi.org/10.3390/app11125679
Y1  - 2021/06/02/
AV  - public
IS  - 12
A1  - Rauber, D
A1  - Hofmann, A
A1  - Philippi, F
A1  - Kay, CWM
A1  - Zinkevich, T
A1  - Hanemann, T
A1  - Hempelmann, R
KW  - Ionic liquids; ammonium; batteries; electrolytes-
N2  - Ionic liquids are attractive and safe electrolytes for diverse electrochemical applications such as advanced rechargeable batteries with high energy densities. Their properties that are beneficial for energy storage and conversion include negligible vapor-pressure, intrinsic conductivity as well as high stability. To explore the suitability of a series of ionic liquids with small ammonium cations for potential battery applications, we investigated their thermal and transport properties. We studied the influence of the symmetrical imide-type anions bis(trifluoromethanesulfonyl)imide ([TFSI]?) and bis(fluorosulfonyl)imide ([FSI]?), side chain length and functionalization, as well as lithium salt content on the properties of the electrolytes. Many of the samples are liquid at ambient temperature, but their solidification temperatures show disparate behavior. The transport properties showed clear trends: the dynamics are accelerated for samples with the [FSI]? anion, shorter side chains, ether functionalization and lower amounts of lithium salts. Detailed insight was obtained from the diffusion coefficients of the different ions in the electrolytes, which revealed the formation of aggregates of lithium cations coordinated by anions. The ionic liquid electrolytes exhibit sufficient stability in NMC/Li half-cells at elevated temperatures with small current rates without the need of additional liquid electrolytes, although Li-plating was observed. Electrolytes containing [TFSI]? anions showed superior stability compared to those with [FSI]? anions in battery tests.
ER  -