TY - GEN A1 - Owoeye, K KW - Data Mining: Mining Spatial KW - Temporal Data KW - Multidisciplinary Topics and Applications: AI for Life Science KW - Machine Learning: Classification KW - Machine Learning: Deep Learning: Sequence Modeling CY - Yokohama, Japan PB - IJCAI International Joint Conferences on Artificial Intelligence Organization UR - http://dx.doi.org/10.24963/ijcai.2020/604 N2 - Early forecasting of bird migration patterns has important application for example in reducing avian biodiversity loss. An estimated 100 million to 1 billion birds are known to die yearly during migration due to fatal collisions with human made infrastructures such as buildings, high tension lines, wind turbines and aircrafts thus raising a huge concern for conservationists. Building models that can forecast accurate migration patterns is therefore important to enable the optimal management of these critical infrastructures with the sole aim of reducing biodiversity loss. While previous works have largely focused on the task of forecasting migration intensities and the onset of just one migration state, predicting several migration states at even finer granularity is more useful towards optimally managing the infrastructures that causes these deaths. In this work, we consider the task of forecasting migration patterns of the popular Turkey Vulture (Cathartes aura) collected with the aid of satellite telemetry for multiple years at a resolution of one hour. We use a deep Bidirectional-GRU recurrent neural network augmented with an auxiliary task where the state information of one layer is used to initialise the other. Empirical results on a variety of experiments with our approach show we can accurately forecast migration up to one week in advance performing better than a variety of baselines. ID - discovery10120848 N1 - © 2020, IJCAI This version is the version of record. For information on re-use, please refer to the publisher?s terms and conditions. AV - public SP - 4382 Y1 - 2021/01/15/ EP - 4388 TI - Forecasting Avian Migration Patterns using a Deep Bidirectional RNN Augmented with an Auxiliary Task ER -