TY  - JOUR
AV  - public
IS  - 8
N2  - Significance: Two-dimensional (2-D) fully convolutional neural networks have been shown
capable of producing maps of sO2 from 2-D simulated images of simple tissue models.
However, their potential to produce accurate estimates in vivo is uncertain as they are limited
by the 2-D nature of the training data when the problem is inherently three-dimensional (3-D),
and they have not been tested with realistic images.
Aim: To demonstrate the capability of deep neural networks to process whole 3-D images and
output 3-D maps of vascular sO2 from realistic tissue models/images.
Approach: Two separate fully convolutional neural networks were trained to produce 3-D maps
of vascular blood oxygen saturation and vessel positions from multiwavelength simulated
images of tissue models.
Results: The mean of the absolute difference between the true mean vessel sO2 and the network
output for 40 examples was 4.4% and the standard deviation was 4.5%.
Conclusions: 3-D fully convolutional networks were shown capable of producing accurate sO2
maps using the full extent of spatial information contained within 3-D images generated under
conditions mimicking real imaging scenarios. We demonstrate that networks can cope with some
of the confounding effects present in real images such as limited-view artifacts and have the
potential to produce accurate estimates in vivo.
KW  - photoacoustics; deep learning; oxygen saturation; sO2; machine learning; quantitative photoacoustics.
A1  - Bench, C
A1  - Hauptmann, A
A1  - Cox, B
VL  - 25
JF  - Journal of Biomedical Optics
N1  - Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI
TI  - Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions
Y1  - 2020/08/24/
UR  - https://doi.org/10.1117/1.JBO.25.8.085003
ID  - discovery10108541
ER  -