TY  - JOUR
N2  - Transketolase (TK) cofactor binding has been studied extensively over many years, yet certain mysteries remain, such as a lack of consensus on the cooperativity of thiamine pyrophosphate (TPP) binding into the two active sites, in the presence and absence of the divalent cation, Mg2+. Using a novel fluorescence-based assay, we determined directly the dissociation constants and cooperativity of TPP binding and provide the first comprehensive study over a broad range of cofactor concentrations. We confirmed the high-affinity dissociation constants and revealed a dependence of both the affinity and cooperativity of binding on [Mg2+], which explained the previous lack of consensus. A second, discrete and previously uncharacterised low-affinity TPP binding-site was also observed, and hence indicated the existence of two forms of TK with high- (TKhigh) and low-affinity (TKlow). The relative proportions of each dimer were independent of the monomer-dimer transition, as probed by analytical ultracentrifugation at various [TK]. Mass spectrometry revealed that chemical oxidation of TKlow led to the formation of TKhigh, which was 22-fold more active than TKlow. Finally, we propose a two-species model of transketolase activation that describes the interconversions between apo-/holo-TKhigh and TKlow, and the potential to significantly improve biocatalytic activity by populating only the most active form.
A1  - Wilkinson, HC
A1  - Dalby, PA
SN  - 2045-2322
AV  - public
N1  - This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article?s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article?s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
TI  - Novel insights into transketolase activation by cofactor binding identifies two native species subpopulations
UR  - https://doi.org/10.1038/s41598-019-52647-y
Y1  - 2019/11/06/
ID  - discovery10085810
VL  - 9
JF  - Scientific Reports
ER  -