TY  - JOUR
EP  - 227
AV  - public
N2  - Diffusion magnetic resonance imaging (dMRI) is considered as a useful tool to study solid tumours. However, the interpretation of dMRI signal and validation of quantitative measurements of is challenging. One way to address these challenges is by using a standard reference material that can mimic tumour cell microstructure. There is a growing interest in using hollow polymeric microspheres, mainly prepared by multiple steps, as mimics of cells in healthy and diseased tissue. The present work reports on tumour cell-mimicking materials composed of hollow microspheres for application as a standard material in dMRI. These microspheres were prepared via one-step co-electrospraying process. The shell material was poly(d,l-lactic-co-glycolic acid) (PLGA) polymers with different molecule weights and/or ratios of glycolic acid-to-lactic, while the core was polyethylene glycol (PEG) or ethylene glycol. The resultant co-electrosprayed products were characterised by optical microscopy, scanning electron microscopy (SEM) and synchrotron X-ray micro-CT. These products were found to have variable structures and morphologies, e.g. from spherical particles with/without surface hole, through beaded fibres to smooth fibres, which mainly depend on PLGA composition and core materials. Only the shell material of PLGA polymer with ester terminated, Mw 50,000-75,000?g?mol-1, and lactide:glycolide 85:15 formed hollow microspheres via the co-electrospraying process using the core material of 8?wt% PEG/chloroform as the core. A water-filled test object (or phantom) was designed and constructed from samples of the material generated from co-electrosprayed PLGA microspheres and tested on a 7?T MRI scanner. The preliminary MRI results provide evidence that hollow PLGA microspheres can restrict/hinder water diffusion as cells do in tumour tissue, implying that the phantom may be suitable for use as a quantitative validation and calibration tool for dMRI.
JF  - Materials Science and Engineering: C
UR  - https://doi.org/10.1016/j.msec.2019.03.062
VL  - 101
A1  - Zhou, F-L
A1  - Wu, H
A1  - McHugh, DJ
A1  - Wimpenny, I
A1  - Zhang, X
A1  - Gough, JE
A1  - Hubbard Cristinacce, PL
A1  - Parker, GJM
ID  - discovery10074520
KW  - Co-electrospraying
KW  -  Diffusion magnetic resonance imaging
KW  -  Hollow microspheres
KW  -  Phantom
KW  -  Tumour cells
N1  - This version is the author accepted manuscript. For information on re-use, please refer to the publisher?s terms and conditions.
SP  - 217
SN  - 1873-0191
Y1  - 2019/08//
TI  - Co-electrospraying of tumour cell mimicking hollow polymeric microspheres for diffusion magnetic resonance imaging
ER  -