TY  - JOUR
A1  - Royston, P
JF  - Stata Journal
UR  - https://www.stata-journal.com/sj18-1.html
SN  - 1536-867X
IS  - 1
N1  - This version is the version of record. For information on re-use, please refer to the publisher?s terms and conditions.
VL  - 18
SP  - 3
KW  - power_ct
KW  -  randomized controlled trial
KW  -  time-to-event outcome
KW  -  restricted mean survival time
KW  -  log-rank test
KW  -  Cox test
KW  -  combined test
KW  -  treatment effect
KW  -  hypothesis testing
KW  -  flexible parametric model
PB  - StataCorp
N2  - Randomized controlled trials with a time-to-event outcome are usually designed and analyzed assuming proportional hazards (PH) of the treatment effect. The sample-size calculation is based on a log-rank test or the nearly identical Cox test, henceforth called the Cox/log-rank test. Nonproportional hazards (non-PH) has become more common in trials and is recognized as a potential threat to interpreting the trial treatment effect and the power of the log-rank test?hence to the success of the trial. To address the issue, in 2016, Royston and Parmar (BMC Medical Research Methodology 16: 16) proposed a "combined test" of the global null hypothesis of identical survival curves in each trial arm. The Cox/logrank test is combined with a new test derived from the maximal standardized difference in restricted mean survival time (RMST) between the trial arms. The test statistic is based on evaluations of the between-arm difference in RMST over several preselected time points. The combined test involves the minimum p-value across the Cox/log-rank and RMST-based tests, appropriately standardized to have the correct distribution under the global null hypothesis. In this article, I introduce a new command, power_ct, that uses simulation to implement power and sample-size calculations for the combined test. power_ct supports designs with PH or non-PH of the treatment effect. I provide examples in which the power of the combined test is compared with that of the Cox/log-rank test under PH and non-PH scenarios. I conclude by offering guidance for sample-size calculations in time-to-event trials to allow for possible non-PH.
ID  - discovery10046121
AV  - public
Y1  - 2018///
EP  - 21
TI  - Power and sample-size analysis for the Royston?Parmar combined test in clinical trials with a time-to-event outcome
ER  -