TY  - JOUR
N1  - © 2016 Wright, Ermine, Jørgensen, Parish and Thompson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Y1  - 2016/07/05/
AV  - public
VL  - 10
TI  - Over-Expression of Meteorin Drives Gliogenesis Following Striatal Injury
KW  - GDNF
KW  -  brain repair
KW  -  forebrain injury
KW  -  neurogenesis
KW  -  oligodendrogenesis
KW  -  striatum
A1  - Wright, JL
A1  - Ermine, CM
A1  - Jørgensen, JR
A1  - Parish, CL
A1  - Thompson, LH
JF  - Frontiers in Cellular Neuroscience
SN  - 1662-5102
UR  - http://doi.org/10.3389/fncel.2016.00177
ID  - discovery10043956
N2  - A number of studies have shown that damage to brain structures adjacent to neurogenic regions can result in migration of new neurons from neurogenic zones into the damaged tissue. The number of differentiated neurons that survive is low, however, and this has led to the idea that the introduction of extrinsic signaling factors, particularly neurotrophic proteins, may augment the neurogenic response to a level that would be therapeutically relevant. Here we report on the impact of the relatively newly described neurotrophic factor, Meteorin, when over-expressed in the striatum following excitotoxic injury. Birth-dating studies using bromo-deoxy-uridine (BrdU) showed that Meteorin did not enhance injury-induced striatal neurogenesis but significantly increased the proportion of new cells with astroglial and oligodendroglial features. As a basis for comparison we found under the same conditions, glial derived neurotrophic factor significantly enhanced neurogenesis but did not effect gliogenesis. The results highlight the specificity of action of different neurotrophic factors in modulating the proliferative response to injury. Meteorin may be an interesting candidate in pathological settings involving damage to white matter, for example after stroke or neonatal brain injury.
ER  -