@article{discovery10022672, note = {This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.}, month = {January}, volume = {323}, journal = {Powder Technology}, year = {2018}, title = {A comparison between interparticle forces estimated with direct powder shear testing and with sound assisted fluidization}, pages = {1--7}, url = {http://dx.doi.org/10.1016/j.powtec.2017.09.038}, abstract = {Understanding the role of the interparticle forces in fluidization of cohesive powders is crucial for a proper application of fluidization to these type of powders. However, a direct measure of the interparticle interactions (IPFs) is challenging, mainly because cohesive particles cannot be fluidized under ordinary conditions. That is the reason why IPFs are typically measured using a rheological approach. The aim of this study is, therefore, to evaluate the IPFs of cohesive powders under actual fluidization conditions, by using an experimental and theoretical approach. In particular, a sound assisted fluidized bed apparatus was used to achieve a fluidization regime of the particles. Then, the cluster/subcluster model was applied to calculate IPFs, starting from the experimental data. The obtained IPFs were then compared to those evaluated by using a shear testing approach.}, issn = {0032-5910}, author = {Chirone, R and Raganati, F and Ammendola, P and Barletta, D and Lettieri, P and Poletto, M}, keywords = {Sound assisted fluidization, Fine and ultrafine cohesive powders, Interparticle forces, Cluster/subcluster model} }