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Topography and Mechanical Properties of Single Molecules of Type |
Collagen Using Atomic Force Microscopy

Laurent Bozec and Michael Horton
Bone and Mineral Centre, Department of Medicine, University College London, London, United Kingdom

ABSTRACT Although the mechanical behavior of tendon and bone has been studied for decades, there is still relatively little
understanding of the molecular basis for their specific properties. Thus, despite consisting structurally of the same type |
collagen, bones and tendons have evolved to fulfill quite different functions in living organisms. In an attempt to understand the
links between the mechanical properties of these collageneous structures at the macro- and nanoscale, we studied trimeric type
| tropocollagen molecules by atomic force microscopy, both topologically and by force spectroscopy. High-resolution imaging
demonstrated a mean (+ SD) contour length of (287 + 35) nm and height of (0.21 = 0.03) nm. Submolecular features, namely
the coil-pitch of the molecule, were also observed, appearing as a repeat pattern along the length of the molecule, with a length
of ~8 nm that is comparable to the theoretical value. Using force spectroscopy, we established the stretching pattern of the
molecule, where both the mechanical response of the molecule and pull-off peak are convoluted in a single feature. By
interpreting this response with a wormlike chain model, we extracted the value of the effective contour length of the molecule at
(202 £ 5) nm. This value was smaller than that given by direct measurement, suggesting that the entire molecule was not being
stretched during the force measurements; this is likely to be related to the absence of covalent binding between probe, sample,

and substrate in our experimental procedure.

INTRODUCTION

Connective tissues in animals are the ensemble of a varied
cell population distributed among protein fibers, embedded
in a viscous ground substance, the extracellular matrix. The
role of these connective tissues is not only to bind cells
together, but also influences their behavior, development,
and polarity, both directly and via the host of growth and
regulatory factors that are concentrated within the matrix.
Three main types of extracellular fibers can be identified in
connective tissue: collagen, reticular, and elastic. One of
their common characteristics is that they are formed indi-
rectly by fibroblasts, the cells generating protein subunits,
which later interact with each other within the matrix to form
mature fibers. Among these, collagen is the major structural
protein and is the most abundant in the human body. The
collagen molecule consists of three left-handed coiled poly-
peptide chains, two a-chains and one a2-chain intertwined
in an overall right-handed coil, tropocollagen (Ramachandra
and Karthan, 1955). The basic unit of each of the polypeptide
chains consists of the repeating sequence, Glycine-X-Y,
where X is often proline and Y hydroxyproline. It is the
frequent occurrence of proline and hydroxyproline groups in
the polypeptide chain that causes the collagen a-chains to be
tightly packed into a triple helical conformation. Several
collagen-related diseases occur in humans, osteoporosis and
tendinitis being common examples. Both are linked to the
mechanical properties of collagen and its higher order,
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structurally related forms: collagen fibrils and fibers, and the
macroscopic tissues, tendon, and bone.

There have been many studies of collagen fibers using
arange of experimental techniques, but more recently atomic
force microscopy (AFM) has been used to study this protein
under physiological conditions, unattainable by precursor
techniques such as x-ray diffraction crystallography or trans-
mission electron microscopy (TEM). The ability of AFM to
image as well as to perform force measurements has enabled
experimentalists to compare results obtained using molecular
scale samples to those obtained at the macroscale using bulk
techniques. Early studies involving AFM and collagen fibers
were initially carried out by Chernoff et al. (1992), who
imaged collagen fibers under dry conditions but were unsuc-
cessful in observing the characteristic D-banding as initially
proposed by Schmitt and co-workers in 1942 (Schmitt et al.,
1942) based on TEM. This work was later pursued suc-
cessfully by Baselt et al. (1993) and Revenko et al. (1994),
who presented AFM images of collagen fibers displaying the
characteristic D-banding pattern. Recently, Gutsmann et al.
(2003) published a detailed account of both topological and
mechanical behavior of the collagen fibers, isolated from rat
tail tendon. One result supported the view that the fibers had
the topology of a hollow tube and they suggested that the
collagen fiber is composed of a hard shell with a less dense
core, giving both flexibility and elasticity to the fiber. In a
later publication, Gutsmann et al. (2004) presented some
spectroscopic force measurements performed on rat tail col-
lagen fibers. The aim of that study was to link the stretching
pattern of the fiber with the D-banding pattern of the fiber,
initially proposed by Schmitt et al. (1942). The stretching
pattern that was obtained while pulling on the collagen fiber
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proved to be too complex to identify single characteristic
events. Nevertheless, two features were identified with
ruptures at 22 nm and 78 nm; these were hypothesized as
being related to a possible repeat in the fiber structure,
though all of these were not identified by AFM imaging.

There have been few investigations of collagen at the level
of the single triple helical tropocollagen molecule structure
using AFM. Mertig et al. (1997) presented an analysis of an
in vitro generated two-dimensional collagen network forma-
tion. In their studies, they managed to isolate single collagen
monomers that were prepared on a mica surface and ob-
served that the monomer did not undergo denaturation as it
bound the mica surface. More recently, Sun et al. (2002)
used optical tweezers to characterize the mechanical be-
havior of collagen, but more specifically its flexibility. In
their study, they used procollagen, the precursor form of the
collagen monomer. Procollagen has cysteine groups at both
its N- and C-termini, which enables covalent binding to the
surface-probe or beads, though not with controlled orienta-
tion. They found that the monomer had a persistence length
of 14.5 nm and a contour length of 309 nm.

The aims of our study were to use AFM to investigate type
I collagen at the single molecule level to understand the
fundamental mechanical behavior of this protein, and to
correlate these findings with high-resolution topography
imaging.

MATERIAL AND METHODS
Materials

In all experiments, purified soluble type I collagen monomer solution was
used from a stock solution: 1 mg/ml in 0.1 M acetic acid (type I rat tail
collagen, Sigma-Aldrich, Gillingham, UK) with the stock solution being
kept at 4°C until use. Depending on the experiment performed, 1:100 or
1:1000 dilutions in phosphate buffer saline (PBS) were performed with the
resulting solutions maintained at 4°C on ice during subsequent preparations.

Imaging collagen by AFM

For single molecule imaging, a droplet 40 ul of the 1:1000 solution was
deposited on a mica substrate (mica disks; Agar Scientific, Stansted, UK)
that had been freshly cleaved. The solution was left to incubate for 10 min,
avoiding droplet evaporation by keeping a water droplet at the side of the
sample but not in contact so as to avoid sample dilution. The sample was
then rinsed, firstly using PBS and then using ultra high quality (UHQ) water
to avoid any salt crystal formation. Finally the sample was dried using
a gentle stream of dry N,. The imaging experiments were carried out using
a Multimode-Nanoscope IV (Veeco, Santa Barbara, CA), equipped with an
E scanner and NSC tips-D lever (MikroMasch, Tallinn, Estonia), with the
following characteristics in air: ~28 kHz resonant frequency and ~0.35
N/m nominal spring constant. The samples were imaged in dry conditions in
tapping mode, with the minimum amplitude set point selected to avoid either
damaging or altering the sample on the surface. To do so, the probe was
brought into contact with a false-engagement (the probe touches the surface
and immediately retracts but remains very close), and then the amplitude set
point was slowly reduced until the probe remade contact with the surface.
This ensures that there is the minimal force applied by the probe onto the
sample.
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Single molecule pulling experiments

For single molecule force measurements, a single droplet of 80 ul of the
1/100 solution was deposited on a gold-coated glass slide, previously stored
in liquid nitrogen. The solution was left to incubate for 5 min, avoiding
evaporation. The sample was then gently rinsed using PBS. Finally a drop-
let of 150 wl PBS was deposited on the sample, before starting the
measurements. Force measurements were performed on two different
instruments: a Multimode-Nanoscope IV with a Picoforce attachment
(Veeco) and a Molecular Force Puller, MFP1 (Asylum Research, Santa
Barbara, CA). For consistency, the same type of probe was used on both the
instruments during all of the experiments: Microlever-D tips lever
(MikroMasch) with the following characteristics in buffer: ~3.5 kHz
resonant frequency and ~0.03 N/m nominal spring constant. The spring
constant of the levers was calibrated by performing a thermal tune of the
lever in buffer conditions (fitting of the Brownian motion of the lever)
(Hutter and Bechhoefer, 1993; Walters et al., 1996). Typical values of the
spring constant varied from 0.030 N/m to 0.055 N/m, but the resonant
frequency was consistently F,.,= 3.5 kHz. The deflection sensitivity of the
detector was calibrated by performing a force curve on a bare mica substrate
in dry conditions. During the force measurement cycles, a typical load of <5
nN was applied at a constant loading rate of 1.8 wm/s. Series of 100 curves
were recorded at a single location on the sample surface, before the probe
was moved to a new location with up to 1000 force distance curves being
accrued in each experiment. Finally, after the experiment, the samples were
imaged using a new probe to evaluate surface coverage by collagen.

The resulting force-distance curves were subsequently analyzed using all
the force curves that showed a stretching event and were fitted with the
wormlike chain elasticity model (Bustamante et al., 1994) to determine the
contour length of the molecule. Once the contour length had been
established a frequency plot of the entire data set is produced, to establish
the mean of the distribution (L,: effective contour length). All numerical data
are quoted as the mean = SD of the data set.

RESULTS AND DISCUSSION
Single molecule imaging

Surface coverage of the substrate

The ideal approach to the study of mature tropocollagen
would be to use covalent binding to a coated surface, as
performed in related experiments (Rounsevell et al., 2004).
However, producing recombinant collagen in eukaryotic
cells with a defined sequence modification is difficult and
collagen, being insoluble after enzymatic cleavage of pro-
collagen, cannot easily be chemically modified. Thus, we
took the simple approach of binding the collagen to the
analysis surface noncovalently by physisorption. Since the
strength of this interaction via van der Waals forces is weak,
desorption of the adsorbate can easily occur in a buffer en-
vironment due to ionic screening lessening binding and to
the substantial, though controlled, forces applied to the
molecules during the AFM scanning process. This means
that imaging collagen monomers in buffer solution in the
absence of covalent linkage to the substrate was not possible;
nevertheless, results were obtained when collagen was imaged
under dry conditions.

The first step toward successful imaging of collagen
monomers involved the deposition of collagen onto the mica
surface with a low surface coverage to single out individual
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monomers. This implied adjusting both the concentration of
the solution used as well as the corresponding incubation
times. Fig. 1 presents two images obtained from solutions
that were, respectively: a), 1 ug/ml for an incubation time of
10 min; b), 10 wg/ml for an incubation time of Smin; and c),
1 pg/ml for an incubation time of 10 min, the solution left to
rest at room temperature for 8 h before incubation.

At low surface coverage concentration, collagen mono-
mers are distributed randomly on the mica surface (Fig. 1 a);
aggregates were not seen and no particular molecular ori-
entation observed. At much higher concentration, the col-
lagen monomers are densely packed and seem to follow a
generic orientation (Fig. 1 b). This overall orientation was
found to be consistent over a very large area of the sample, as
images could be recorded with offset of a few millimeters
and still present the same pattern and orientation. It could be
suggested that this effect is not due to the steric forces
occurring during the rinsing (no flow was used), as suc-
cessive sample preparation implying a rinsing in different
directions was not linked to this overall orientation. Fur-
thermore, the orientation of the collagen monomers in Fig. 1
b was not related either to the scanning direction of the AFM
probe, as different scanning angles did not alter the ori-

1.5nm
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entation. Nevertheless, a drying orientation could occur as
a result of the recession of the solvent base. Considering the
in vivo process of collagen molecular aggregation, another
possible explanation for the formation of this network would
be that they are formed by electrostatic interactions between
side chains exposed to solvent and available for intermolec-
ular interactions. As there is no intrinsic dipole moment in
the triple helix (Bella et al., 1994, 1995). Though the
mechanism by which collagen molecules aggregates to form
a fibrillar network is still not well understood, the presence of
the orientation could be the first step toward molecular
aggregation and a possible fibrillogenesis. For reference,
fibrillogenesis usually takes place under low pH (~4.2) and
low salt concentrations, resulting in the formation of col-
lagen fibers with the characteristic D-banding (Christiansen
et al., 2000). Jiang et al. (2004), have recently published
similar results demonstrating that the assembly of collagen
monomers into ultrathin highly anisotropic ribbon structures
is dependent on the pH of the buffer. In this publication,
Jiang and his co-workers observed very similar patterns
to that presented in Fig. 1 b, when the pH of the buffer was
7.5. This result was confirmed by considering Fig. 1 c. In this
case, a low-concentration solution of collagen molecules was

FIGURE 1 Topographical images (height;
tapping mode in air) of type I collagen
monomers on mica substrate: () low surface

1 L}
0.0 Height 20um 00

2.0 nm

0.0 2.0um

coverage, 1 ug/ml solution; (b) high surface
coverage, 10 pwg/ml solution; and (¢) 1 pg/ml
for an incubation time of 10 min, solution
left at room temperature for 8 h before
incubation.
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left to rest for a period of 8 h at room temperature. The
resulting preparation enables molecular aggregation to oc-
cur. In this figure, a general orientation of the molecule is
again observed but this time, the molecules have formed
ribbons or prefibrillar structures which would support a case
for fibrillogenesis to occur under defined conditions (Jiang
et al., 2004).

Topographic features of collagen monomers

Topographic features of single type I collagen monomers, as
presented in Fig. 1 a, were analyzed and found to have the
following characteristics (Table 1). First, the contour length of
the monomer, 287 = 35 nm, corresponds to the value quoted
in literature from collagen monomers with comparable num-
bers of residues. Second, the height of the monomer is
smaller, 0.21 = 0.03 nm, than the theoretical radius of the
monomeric collagen triple helix (~1.5 nm), whereas the
measured width is much larger than predicted, 8.3 = 0.7 nm
(note that no probe deconvolution was performed). This
deviation from predicted dimensions is commonly found and
has been reported widely for DNA (Fritz et al., 1995; Schabert
and Rabe, 1996). In our study, collagen was imaged in a dry
environment where the molecule tends to collapse onto a
surface, due to either the load applied by the mode of imaging
(tapping mode in this case) or the binding forces between the
monomer and substrate (stronger van der Waals forces).

It was also noted that there was a repetitive pattern
observable along the length the collagen monomer; Fig. 2
shows examples of line scans along the long axis of collagen.
The line scans exhibit a series of peaks occurring regularly
with a consistent width: ~8 nm (n = 20). A possible
explanation for this repeat pattern could be that the probe
was following the coil-pitch of the collagen molecule.
Indeed, the theoretical value of this coil-pitch is known to be
85.5 A from x-ray analysis (Beck and Brodsky, 1998).
However these results should be treated with some caution as
similar experiments, carried out on DNA to study the coil-
pitch of the double strand, have resulted in observation of
apparent axial features (Hansma and Hansma, 1993; Han
et al., 1995; Zhang et al., 1996) though proof that they relate
to true molecular features is lacking. It is known that the
AFM can generate probe-sample artifacts that would con-
volute real features of the sample with the end of the tip itself

TABLE 1 Topographic analysis of type | collagen by direct
AFM measurement

Typel collagen monomer Values = SD N
Length (nm) 287 = 35 20
Height (nm) 0.21 = 0.03 20
Width (nm) 83 0.7 20

Substrate roughness (nm) <0.01 (mica) —

Note: Data were derived from images in which probe deconvolution was
not performed.
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(typically 10 nm for tips used in this experiment) resulting in
a false impression of the features in either width and/or
length (Morris et al., 1999). This tends to occur when the
repeat pattern has similar dimensions to that the tip itself. In
our experiments, measurements of the coil-pitch induced
repeats were taken in directions perpendicular and parallel to
the scanning axis, which suggest that these observed repeats
could be real surface features on the collagen molecule.

Finally, some of monomers (<10%) show a much wider
end when compared to the rest of the molecule, as presented
in Fig. 3. The increase in width between a middle section of
the monomer and its end can be up to threefold. One reason
for this occurrence may be the way that the collagen mono-
mer is produced. Type I collagen monomers originate from
procollagen; after formation by cells of the procollagen triple
helix, proteolytic enzyme cleavage occurs to enable collagen
molecules to assemble into fibers (Olsen, 1991), and, during
this process, the amino and the carboxylic termini are
cleaved, leaving the triple helix uncapped at both its ends.
Therefore, it is possible that the triple helix could fray,
resulting in a much wider end of the monomer, or it could be
simply that the free end of the monomer refolds back on
itself. Recent x-ray fiber diffraction experiments performed
on the axial structure of the C-terminal telopeptide region
(Orgel et al., 2000) supports this latter possibility; these
showed the occurrence of a hairpin conformation with the
C-terminus folded back onto the triple helix.

Single molecule mechanics
Stretching pattern of tropocollagen

Having successfully imaged and characterized the topology
of type I collagen monomers, it was then possible to in-
vestigate their mechanical properties. To do so, Force (F)
versus extension curves (z) were recorded on a sample of
type I collagen monomers deposited onto glass freshly coated
with gold (Rounsevell et al., 2004). The protein concentra-
tion and incubation times were those that were previously
described (Fig. 1 a) and the force measurements were per-
formed in PBS buffer (pH 7.4).

Fig. 4 a, shows a typical force versus distance curve with
a complex structure containing features similar to that of
those that Gutsmann et al. (2004) reported when studying the
stretching pattern of macromolecular complexes of collagen
(i.e., fibers consisting of several thousands of molecules)
originating from rat tail tendon.

In most cases, the force curves present a reproducible
stretching pattern: the stretching peak occurs once the AFM
probe has been retracted to a given distance rather than as
soon as the probe leaves the sample surface (asterisk, Fig. 4
b). During this phase, there is little or no force exerted by the
probe onto the monomer as no deflection can be detected.
Thus, one may assume that the monomer undergoes a
straightening during this phase that requires forces that are
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too weak to be detected with the current AFM setup. Once
the monomer is fully extended, a load begins to be applied by
the probe and the molecule starts to be stretched (dagger,
Fig. 4 b). After the stretching phase, snap-off of the molecule
from the probe or of the molecule from the substrate occurs.

To understand fully the mechanical properties of col-
lagen, it is essential to know whether a single monomer or
a series of monomers are being stretched at the same time.
In common with the majority of AFM *‘pulling’’ experi-
ments no specific covalent coupling between the AFM tip
and collagen was used in our studies; thus there is no
control over the binding process and hence no guarantee
that single molecules are being examined. Nevertheless, by
considering the stretching pattern of repeated experiments,
one can differentiate between single and multiple stretching
events. As mentioned earlier, two overall types of stretching
pattern are observed: a unique stretching peak similar to
those observed by Sun et al. (2002) or a complex series of
stretching peaks as observed by Gutsmann et al. (2004).

Section

Thus, comparing our results with the above, one can con-
sider a single stretching peak as being the mechanical re-
sponse of a single monomer and a multiple stretching peak
pattern to be the convoluted response of multiple monomers
attached onto the probe.

Substrate binding and contour length

To understand, the mechanical behavior of the molecule,
several parameters have to be assessed. First, it was noticed
that the binding affinity of the collagen to the AFM tip was
high compared to similar single molecule force measurement
experiments. Typically, stretching events were detected in
>26% of the force distance curves (picoforce, 26.3%; MFP,
27.4%).

A second point, as illustrated by Fig. 4 c, involves sample
desorption. This phenomenon occurs when a plateau appears
in the retraction curve after the pull-off of the probe (Conti
et al., 2001). In our experiments, this was found to be un-
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FIGURE 3 (Left) Topographical image
(height; tapping mode in air) of type I col-
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FIGURE 4 Force-distance curves obtained by pulling on type I collagen
monomers. (@) Stretching pattern obtained when several monomers bind to
the tip. (b) Stretching pattern obtained when a single monomer binds to the
tip. Marker (*) indicates when the tip leaves the sample surface. Marker (1)
indicates when the molecule starts being stretched. The lack of deflection
between the two markers indicates that the monomer is being straightened
with such a low force that the cantilever cannot detect it. (¢) Stretching
pattern presenting a plateau after the pull-off indicating the desorption or
peel-off of the molecule from the surface. (/nsef) Zoom on plateau after the
pull-off.

common (<1%) suggesting that seldom desorption of the
molecule from either the tip or the substrate occurs during
the stretching process.

To explain the mechanical behavior of the monomer, as
expressed by the peaks present in the force-distance curves
illustrated in Fig. 4, it was necessary to analyze them quan-
titatively using a classical entropic treatment such as the
wormlike chain (WLC) model (Bustamante et al., 1994).
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Similar studies involving the characterization of the mechan-
ical properties of DNA (Baumann et al., 1997; Wang et al.,
1997) and titin (Rief et al., 1997; Tskhovrebova et al., 1997)
suggested that this approach could also be applied to the
collagen molecule.

The WLC model is often used to describe the mechanical
behavior of a protein as it is being stretched or extended, by
establishing a relation between the extension of the protein
itself and the entropic force induced by the extension. The
WLC can be written as follows:

Oy 0)

where F is the entropic force, x the extension, g the per-
sistence length, and L, is the contour length of the monomer.
This model was successfully applied to all data that showed
a stretching pattern, as presented in Fig. 5. The resulting
values of the contour lengths were then plotted in a frequency
plot and the most probable contour length was then ex-
tracted. Fig. 6 presents the frequency plots obtained after
fitting data obtained in two experiments involving the same
sample but performed on different instruments (see Materials
and Methods). The resulting frequency plots were then fitted
with a Gaussian distribution to define the mode of the dis-
tribution, thus giving the value of the contour length (Fig. 6).
In our experimental set, the value of the contour length
obtained after the Gaussian fitting are, respectively: Loy =
(206.5 * 8.0) nm and Ly, = (198.3 = 5.6) nm; a and
b subscript referring, respectively, to the results obtained by
the picoforce and MFP. The values of contour length ob-
tained by force measurements are smaller than the topo-
logically measured contour length of the monomer, which is:
Loopoy = (287 = 35) nm (vide supra). If the monomer had
been covalently bound to the both the substrate and the tip, it

=300 - Discontinuity

WLC Fit ——»

=200

=100 -

Force (pN)

0 -50 =100 =150 =200
Extension (nm)

FIGURE 5 Wormlike chain model fitting of the curve obtained for pulling
on a singe molecule. The curve also presents a discontinuity along is cur-
vature as highlighted in the inset. The model tends to fit best the lower part
of the curvature of the stretching peak.
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FIGURE 6 Distribution of the contour length values obtained by modeling
the force-distance curves measured on two different instruments: (top)
Picoforce (Veeco) and (bottom) Molecular Force Puller, MFP1 (Asylum
Research). The two distributions were modeled using a Gaussian fit.

would be expected that fitting of the WLC model to the
force-distance curves would give the contour length of the
entire molecule and any associated chemical linkers, pro-
vided that the monomer was elastic over its entire length. The
frequency plots also present a tail in the region where the
contour length is larger than the length of the monomer itself.
This can be understood by the fact that several monomers
may have bound together and the ensemble was being
stretched by the probe. During a force measurement, the
monomer is attached to the probe and substrate by
physisorption and it is not possible to know where the probe
is binding the molecule along its length. Thus, the resulting
contour length is really a measure of the effective length of
the monomer being stretched: Lyt = (202.4 = 5.0) nm,
with the effective contour length corresponding to the
average of Ly and Ly, Thus, the mechanical properties
obtained by this approach can only be representative of the
actual length of the monomer stretched rather than the entire
molecule; for a more complete experimental evaluation of
collagen single molecule mechanics, further work will be
required utilizing chemical cross-linking methods to ensure
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the entire molecule is extended (Hinterdorfer et al., 2002).
Sun et al. (2002) used the endogenous cysteine residues in
procollagen, though this limits observations to the precursor
protein (2002). Manipulating the mature form might be
problematic as it would require extensive molecular biology
to insert specific binding tags into such a complex molecule
as collagen—both termini would require differential tagging
on one of the components of the triple helix at a location that
would be perfectly exposed after proteolytic processing of
the procollagen; a more fruitful approach may be to chemi-
cally modify the mature triple helix, though the extensive
amino acid repeats in the collagen primary sequence would
present other challenges.

Mechanical behavior of the collagen monomer

While performing the fitting of the WLC model on the peaks,
a characteristic feature occurred on some of the peaks; the
inset in Fig. 5 presents one of these events (‘‘discontinuity’’).
During the stretching events, a discontinuity can occur in the
curvature of the peak, occurring in ~18% of the entire data
set. The WLC fitted the lower part of the curvature of the
peak below the discontinuity well, whereas the upper part did
not (a similar behavior is observed with peaks that do not
show this discontinuity). This suggests that the curvature of
the peak contains two mechanical behaviors, of which the
WLC can only model one effectively. In force-distance
measurements as performed on titin (Rief et al., 1997), for
example, it is common not to include the last peak in the
fitting of the WLC, as it is often considered as the pull-off the
probe. However, in most of the force curves recorded herein,
there is only one peak, compatible with collagen not being
a modular protein. Thus, it is probable, as argued above, that
information regarding the stretching of the monomer is
included in the same peak as the pull-off peak and the
presence of this discontinuity marks a transition between two
mechanical regimes. The first one is situated below the dis-
continuity and corresponds to the portion of the curves that
can be fitted by the WLC where there is true elastic stretching
of the monomer. Other physical techniques will be required
to examine the changes in topology that occur during this
transition. Though we have no direct evidence, it is may be
that it represents stretching and/or unwinding of the mono-
mer. The second regime present in the stretching peak is
more generally known as the pull-off peak. This occurs when
the probe is still being retracted and therefore still applying
an increasing force to the molecule, despite the molecule
itself having undergone a transition. In this regime, the
molecule is inelastic and the WLC model does not fit,
meaning that if the binding forces in the probe-molecule-
substrate system are strong enough, the internal structure of
the monomer may undergo irreversible changes. Once the
force exerted by the retraction of the probe exceeds that of
the binding of the probe-molecule-substrate system, there is
a rupture either of the probe-monomer bound or substrate-
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monomer bound. There have been several accounts in the
literature where partial relaxation or even plateau occurring
in the stretching curve of single molecule could be related to
conformational changes in the system. Marszalek et al.
(2002) have, for example, studied the chair-boat transitions
occurring while stretching polysaccharides molecules. They
found that structural rearrangement may occur when the
molecule of amylose is submitted to large extension force.
The molecule undergoes that release of tension by changing
its native conformation (chair) to a longer conformation
(boat). In the case of the collagen molecule, the nature of the
phenomenon that leads to a discontinuity in the stretching
peak or in the transition in the mechanical behavior is yet to
be elucidated, but could be related to the winding of the
monomer. As mentioned earlier, the tropocollagen molecule
consists of three left-handed coiled polypeptide chains in-
tertwined in an overall right-handed coil. As the molecule is
being stretched, it is possible that the right-handed coil
unwinds, leading to a small extension of the molecule length.
Once this occurs, further stretching may involve a stress
being applied to the hydrogen bonds that link the poly-
peptide chains together. A large stress may induce breakage
in those bonds and therefore prevent the molecule for
regaining its original conformation. A more rational expla-
nation may come from structural variations that occur
throughout the molecule. It is possible for the monomer to
experience some micro-unfolding if there is an interruption
in the continuity of the polypeptide chains due to the absence
of prolines and hydroxyprolines at the respective X- and
Y-sites of the Gly-X-Y repeat sequence. These localized
structural differences could affect the local flexibility of the
molecule sufficiently to influence the mechanical properties
measured by AFM pulling. Perret et al. (2001) have assayed
unhydroxylated recombinant collagen I homotrimer, native
collagen I homotrimer and heterotrimer using dynamic light
scattering. They found the absence of hydroxylated groups
does influence the elasticity of the whole system, reinforcing
that the basis of the inherent flexibility of the collagen
molecule, is not only due to its conformation, but also to the
its nature and the amino-acids contents.

SUMMARY

Herein, we study the topographic and mechanical properties
of type I collagen monomers using AFM. Our focus was to
understand the fundamental mechanical behavior of the
monomer, such as the response of the monomer to an applied
stress. This was only possible, once a controlled surface
coverage of the monomers could be achieved. While ad-
justing the deposition parameters, several experiments were
performed that led to the study of the topology of the
monomer using high-resolution imaging. A repeat pattern
was identified along the length of the monomer, whose pitch
corresponds to the coil-pitch theoretical value. Other results
also showed that molecular orientation was obtained on a
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mica surface depending on the concentration of monomer
used. Even if this was not the prime goal of these experi-
ments, this is a very interesting result as it may be a first step
toward controlling deposition, surface patterning and
fibrillogenesis, processes that would need to be regulated
in the development of artificial, collagen-based materials for
tissue engineering and implantable device applications
(Wilson et al., 2001). It is interesting that the conditions
under which these occurs are not similar to those used in
published work on collagen fibrillogenesis (Christiansen
et al., 2000).

The main focus of this publication revolves around un-
derstanding the mechanical behavior of the collagen mono-
mer under applied stress. The force-distance curves obtained
included those with multiple stretching peaks that were also
observed in a more complex manner in rat tail collagen fibers
in the recent publication by Gutsmann et al. (2004). The
apparent simplicity of the force-distance curves used in our
study emerged from the fact single monomers were pulled
whereas others used macromolecular complexes of collagen
fibers. The generic aim of this study was to further the
understanding of the mechanical behavior of the basic
building block, collagen, of skeletal tissues. There have been
many studies involving macro- or mesoscale mechanical
studies of these collageneous tissues, but none include the
contribution of the monomeric mechanical response. Un-
derstanding the mechanical response of type I tropocollagen
could, for example, may contribute to a more complete
knowledge of the characteristic stress-strain curve of tendons.
The implication of such data could lead to a better under-
standing of the tendon damage such as occurs in tendinitis or
partial tendon rupture (Karlsson et al., 1992; Uhthoff and
Sano, 1997). These experiments offer a precursor approach
to a complete model of collagen biomechanics ranging from
single molecules to entire tissues.
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