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Motivated by the operation of myogenic (self-oscillatory) insect flight muscle, we study a model
consisting of a large number of identical oscillatory contractile elements joined in a chain, whose end is
attached to a damped mass-spring oscillator. When the inertial load is small, the serial coupling favors
an antisynchronous state in which the extension of one oscillator is compensated by the contraction of
another, in order to preserve the total length. However, a sufficiently massive load can synchronize the
oscillators and can even induce oscillation in situations where isolated elements would be stable. The
system has a complex phase diagram displaying quiescent, synchronous and antisynchronous phases, as
well as an unusual asynchronous phase in which the total length of the chain oscillates at a different

frequency from the individual active elements.
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The origin of movement in biological systems can
frequently be traced to molecular motors—specialized
proteins that convert chemical energy to mechanical
work. Kinesin and dynein, which travel along microtu-
bules, and myosin, which pulls on actin filaments, are
typical examples [1,2]. In many cases, such as muscle
contraction or intracellular transport, molecular motors
generate unidirectional motion. But there are also a num-
ber of physiological systems which incorporate motor
proteins that display oscillatory dynamics. These in-
clude eucaryotic flagella and cilia whose undulation is
driven by dynein molecules, and the flight muscles of
many insects which contract rhythmically at a frequency
that is out of step with the excitatory neural impulses [3—
8]. Apparently these systems are self-oscillatory, and the
dynamical instability that leads to vibration is directly
generated by the action of the motor proteins; it is usually
attributed to delayed stretch activation, which can be
caused by a variety of different microscopic mechanisms
(reviewed in Refs. [6,7]). Oscillations have also been
observed in the sarcomeres of skeletal muscle in non-
physiological conditions [9-12] and in experiments that
probe the interaction between individual dynein mole-
cules and microtubules [13]. Even normal muscle fibers
can display a damped oscillatory response to sudden
changes in load [14].

Theoretical analysis has demonstrated that a single fila-
ment interacting with an ensemble of motors can have an
anomalous force-velocity relation [15,16], whereby two
different sliding speeds, one positive and one negative,
can occur at a given load. Experimental confirmation of
this phenomenon has been obtained in gliding motility
assays for both actin- [17] and microtubule-based systems
[18]. In such a situation the motors can collectively gen-
erate oscillations when the filament is connected in series
with an elastic element [19-21], because the solution for
the sliding speed then switches periodically between the
two stable branches. However, direct application of this
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model to muscle fibers, composed of hundreds of sarco-
meres (contractile units) in series, omits a crucial point:
the oscillations will be macroscopically observable only
if there is at least some degree of synchrony between the
oscillations of individual sarcomeres. How might this
occur? One possibility is that the activity of myosin
motors in different sarcomeres is coordinated by some
chemical signaling. An alternative suggestion is that tor-
sion of actin filaments is involved [11]. In this Letter, we
propose a mechanism of synchronization that does not
rely on any such specific molecular process. We in-
vestigate the dynamics of a chain of active mechanical
elements each of which, when isolated, can undergo a
dynamical instability from a quiescent (stable) to an os-
cillatory (unstable) regime. In the case where each ele-
ment is individually stable, we show that the entire chain
can be set into synchronized vibration by the application
of a sufficiently massive inertial load at its end. In the
alternative case where each contractile element is un-
stable, we demonstrate the existence of a variety of dy-
namical regimes, including an unusual asynchronous
state in which individual elements oscillate at a faster
frequency than the mass to which they are connected.
The model system that we investigate is shown in Fig. 1.
Each contractile element in the chain is an active me-
chanical system whose displacement x; is coupled non-
linearly to an internal variable y; (which might, for
example, be the fraction of bound motors, or the concen-
tration of a regulator). We suppose that an element may
either stay still or generate self-sustained oscillations,
depending on the value of a control parameter. In the
vicinity of the critical point where the quiescent state
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FIG. 1. Model system: A chain of serially coupled active
Hopf oscillators is attached to a damped inertial oscillator.
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becomes unstable, the dynamics may be described by the
canonical equation for a Hopf bifurcation. Writing the
complex variable z; = x; + iy;, we have

z;=(io + €)z; — Blz|’z; + F/{, (D

where € is the control parameter and w is the character-
istic frequency of each active oscillator. F' is the force
acting on each of the oscillators in the chain, due to the
coupled mass-spring system and is determined by its
equation of motion:

N
F= —MZRC(Z,- + 0%z + vz)), 2
i=1

where M is the mass of the load, y is a measure of the
damping, and () is the natural frequency of the mass-
spring system. In order to proceed further with the analy-
sis and obtain numerical solutions, we replace Eq. (2)
with a first-order differential equation by inserting Z;
from the first derivative of Eq. (1)

{

e d(z3z})
NM

- { < . .
F = F+N; — eRez; + wImz; + BRe

— O%Rez; — yRez’,-), 3)

where the terms containing z; can be substituted from
Eq. (1).

These equations constitute a system of globally
coupled oscillators [22—-25] (the oscillators interact with
each other via the single variable F). However, our model
differs in a crucial way from classical models of synchro-
nization, such as the Kuramoto model [26], in that the
coupling variable F' is determined by a first-order differ-
ential equation [Eq. (3)], rather than as a function of the
variables z;. By expressing all frequencies in terms of w
and amplitudes in terms of \/w/B, and assuming N > 1,
the number of model parameters is reduced to four: €/ w,
Q/w, y/w, and {/NMw.

We start our analysis by considering the situation in
which the active elements would be stable if isolated,
€ < 0. With e fixed, the frequency of the inertial oscil-
lator () acts as a control parameter for the system as a
whole. We can identify a transition between a quiescent
phase (for () < (),) in which the entire system is at rest,
and a synchronized phase (for ) > _.) in which all of
the contractile elements and the massive load oscillate
together (see Fig. 2). At the critical value () = Q). the
system undergoes a Hopf bifurcation. In its vicinity we
can use linear stability analysis, because the amplitude
tends to zero there. In the synchronized phase, all oscil-
lators have identical displacement z; = z = x + iy, and
Egs. (1) and (3) form a system of three coupled differ-
ential equations for x, y, and F. The characteristic equa-
tion for the eigenvalues of the Jacobian reads A3—
(e = L/NM — y)A2 + (Q* — €y — 2e//NM)A — Q%€ +
(€ + w?){/NM = 0. The transition occurs when the real
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FIG. 2. (a) Phase diagram (Q, quiescent; S, synchronous;
Anti, antisynchronous; A, asynchronous) as a function of the
control parameter € of the active elements and the frequency ()
of the inertial oscillator. Other parameters have the values
{/NMw = 0.3125 and y/w = 0.2. The diagram was estab-
lished by numerical solution of Eqgs. (1) and (3). The phase
boundary of the synchronous state is given by Eq. (4) for e <0
and can be determined by perturbation theory for € > 0.
(b) Magnification of the boxed region in (a).

part of the complex eigenvalue pair changes sign, giving

S I DR

The frequency f of synchronized oscillations at the bi-
furcation is given by the imaginary part of the complex
eigenvalues:

{

f =/ +yNM/D) - & 5)

Note that it is always the case that (), < f < w. Away
from the bifurcation, ) < (., the synchronized oscilla-
tions have a frequency lower than f, thus f represents the
maximal frequency of the system.

To interpret this result in terms of the underlying
physical model, we can consider two different ways of
adjusting the load. In the first, illustrated in Fig. 2(a), we
fix the mass and the damping of the inertial oscillator
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(thus M = const, y = const) and change the stiffness of
the spring (a stiffer spring implies a higher frequency ()
and vice versa). Then a sufficiently strong spring, such
that ) > (), will always maintain the stability of the sys-
tem. But decreasing the stiffness can provoke a transition
to synchronized oscillations, provided that the control
parameter € lies above some threshold value, determined
by the solution ), = 0 of Eq. (4) (i.e., the active elements
must be sufficiently close to their dynamical instability).
We also note that the chain can oscillate synchronously
even when the inertial oscillator itself is overdamped (i.e.,
0 = Q/y < 1).In the second situation, we vary the mass
M of the inertial oscillator while keeping the spring
stiffness MQ? and the damping M7y constant. Now we
find that the system will remain quiescent if the mass is
sufficiently small, but that a larger mass can make the
system oscillate provided that € > —w/+/1 + NMy/{.

We continue the analysis by considering the situ-
ation where the active elements are individually un-
stable, € >0, and would oscillate spontaneously if
isolated. In this case the system displays a greater variety
of phases, as indicated in Fig. 2. For small values of (2,
there is a synchronous phase as described above. For large
values of () there is an antisynchronous phase: All of the
active elements oscillate with the same frequency w, but
with a distribution of phases ¢; = arg(z;) such that the
sum of their extensions is always zero; thus the massive
load remains stationary. When the inertial frequency ()
quite closely matches the characteristic frequency w of
the active oscillators, there is a remarkable phase in
which the individual elements oscillate at one frequency,
while the total extension oscillates at a different, lower
frequency. We label this phase asynchronous. As shown in
Fig. 3, active oscillators form clusters with different
phases ¢; and their phase velocities ¢; periodically
slow down and speed up. The number of oscillators in
each cluster generally decreases with increasing €/ and
can be as small as one, which is the case in the example
shown in Fig. 3. The ensemble of oscillators resembles a
set of vehicles on a congested ring road, which repeatedly
enter a traffic jam. Because vehicles enter the jam at its
rear end and leave at the front, the jam progresses more
slowly than the average speed of an individual vehicle. In
our model, the total extension depends on the phase of the
majority of active oscillators, and the oscillation fre-
quency of the inertial load therefore corresponds to the
speed of propagation of the traffic jam.

The dependencies on () of the frequencies of individual
elements, and of the total displacement, are shown in
Fig. 4. Also shown are the corresponding amplitudes of
motion. In the synchronous phase, both frequencies are
equal and the amplitude of the inertial load is N times
greater than that of each active element. In the asynchro-
nous phase, the amplitude of the inertial oscillator falls
towards zero, while that of the active elements approaches
\/€/B— the amplitude of spontaneous oscillations for an
isolated element. At the same time, the frequency of
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FIG. 3. The asynchronous state. (a) Phase ¢; = arg(z;) of
each of the N = 128 active elements as a function of time.
The phase velocity ¢; of a particular element is slow for a
number of periods of oscillation, then speeds up over a few
periods, then slows again. The average frequency of the active
elements is therefore faster than the speed of propagation of the
high-density area in the phase space, which is the frequency of
the inertial load. (b) Total extension x = 3;Rez; (in units
N\/w/B) as a function of time, illustrating the lower frequency
of the inertial oscillator. Parameters: (/NMw = 0.3125,
v/w =02, €/w = 0.6, and Q/w = 0.83.

the active oscillators approaches their characteristic fre-
quency w. In the antisynchronous phase the frequency
and amplitude of the active elements remain unchang-
ing at these limiting values, and the inertial mass does
not move. For large values of € all transitions are
second order, and the system passes directly from the
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FIG. 4. Frequency and amplitude of oscillations as a function
of ) for a fixed, positive value of the control parameter (€/w =
0.6). These parameters correspond to moving up the right
vertical axis of Fig. 2(a). The system transits from the syn-
chronous (S), to the asynchronous (A), to the antisynchronous
(Anti) phase. Black curves show the frequencies of the inertial
load (continuous) and of the active elements (dashed). Gray
curves show the rms amplitude of the mass (continuous) in
units Ny/w/B and that of each active element (dashed) in units
JJw/B. Other parameters: {/NMw = 0.3125, y/w = 0.2.
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synchronized, to the asynchronous, to the antisynchro-
nous phase as () increases. For small, positive values of €
the transitions become first order and there is a region in
which the synchronous phase and the asynchronous phase
coexist as two metastable states. At intermediate values
of €, a complex asynchronous phase arises in which three
or more clusters of oscillators are synchronized within
each cluster, but the clusters are out of phase with each
other [see Fig. 2(b)].

One experimental situation which appears to corre-
spond to the regime € > 0 is the spontaneous oscilla-
tory contraction of skeletal muscle in nonphysiological
conditions. Oscillations of the length of a myofilament
have been observed when its end was attached to a flex-
ible microneedle [11], and oscillations in the length of
individual sarcomeres have been seen when the total
length was held fixed [9]. These correspond to the syn-
chronous and antisynchronous phases of our model.
Additionally a “metachronal” phase, in which contractile
waves propagate along a myofilament, has been observed
[10]. This cannot be explained by our model. It would
require either chemical signaling between adjacent sarco-
meres or a gradient in one or more of the sarcomere
properties (e.g., the number of myosin molecules interact-
ing with the thin filament) as suggested by Smith and
Stephenson [27].

The mechanics of insect flight muscle has been inves-
tigated in detail by Machin and Pringle [4,5]. They found
that a sudden increase in fiber length caused a subsequent
rise in tension — the phenomenon known as ‘“‘delayed
stretch activation.” Consequently, a muscle subjected to
a sinusoidal change of length produced net work [5]. They
also observed that a muscle could be made to oscillate by
attaching it to an inertial load [4], provided that the
damping was not too great. They suggested that the load
must be resonant (i.e., Q = Q/y > 1) for oscillations to
occur, and found that the frequency of vibration was
primarily determined by the inertia and elasticity of the
load. All of these results are consistent with our model in
the regime € < 0 and {/NMw < 1. But we predict that it
is not in general necessary for the load to be resonant;
oscillations should be observable whenever () is smaller
than (), given by Eq. (4). And we note that the oscillation
frequency generally depends on the characteristic fre-
quency w of the sarcomeres, as well as on the nature of
the inertial load. It is often stated that the wings and
thorax of insects provide a resonant load whose oscilla-
tion is maintained by energy supplied by the flight
muscles [7,8]. In the light of our investigation, it would
be interesting to conduct experiments in which the mass
and damping of this load are modified, to verify whether
the muscles can generate oscillations in the absence of
resonance.
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