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Abstract. We demonstrate how the use of synchronization primitives and thread-
ing policies in distributed object middleware can lead to deadlocks. We identify
that object middleware only has a few built-in synchronizationand threading prim-
itives. We suggest to express them as stereotypes in UML models to allow de-
signers to model synchronization and threading of distributed object systems at
appropriate levels of abstraction. We define the semantics of these stereotypes by
a mapping to a process algebra. This allows us to use model checking techniques
that are available for process algebras to detect the presence or absence of dead-
locks. We also discuss how the results of these model checks can be related back
to the UML diagrams.
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1 Introduction

An increasing number of applications now use a distributed system architecture. If de-
signed properly, these architectures can be more fault-tolerant due to replicated compo-
nents, can achieve better response times if user interface components are executed on
powerful desktop machines or workstations, and they may achieve cost-effective scal-
ability by using several relatively cheap hosts to execute replicated components rather
than one central server or mainframe, which is usually more expensive. The construc-
tion of such distributed systems by directly using network operating system primitives,
such as TCP or UDP sockets, is rather involved. To reduce this complexity, software en-
gineers use middleware [5], which resolves the heterogeneity between distributed hosts,
the possibly different programming languages that are being used in the architecture and
provides higher level interaction primitives for the communication between distributed
system components. There are many different forms of middleware, including transac-
tion monitors, message brokers and distributed object middleware, which encompasses
middleware specifications such as the Object Management Group’s Common Object Re-
quest Broker Architecture (CORBA), Microsoft’s Component Object Model (COM) or
Java’s Remote Method Invocation (RMI). We note that distributed object middleware
offers the richest support to application designers and incorporates primitives for dis-
tributed transaction management and asynchronous message passing.

? This paper is an extended version of [6]



From the set of distributed object middleware approaches, we concentrate on CORBA
[5] in this paper because it offers the richest set of synchronization and threading prim-
itives.

An example scenario is used throughout this paper, which we will use to demonstrate
our ideas and methods. This example involves the remote monitoring of patients which
have been retired from the hospital to their homes. Sensor devices are attached to pa-
tients and information is communicated between the sensor devices and a central server
in a health care centre. Additionally each patient is equipped with an alert device used
in case of an emergency. This example is an inherently distributed system. The differ-
ent approaches have in common that they enable distributed objects to request operation
executions from each other across machine boundaries. We refer to this primitive as an
object request. For this example, we will use object requests to pass diagnostic informa-
tion about patients that are gathered by sensor devices to a centralized database where
the diagnostic data are evaluated, and if necessary alarms are generated.

Distributed objects that reside on different hosts are executed in parallel with each
other. In our example, this means that several different patient monitor hosts gather pa-
tient data at the same time. To handle the situation where several of them send data con-
currently to a server, distributedobject middleware supports different threading policies,
which determine the way in which the middleware deals with concurrent object requests.
A single-threaded policy will queue concurrent requests and execute them in a sequen-
tial manner, whereas a multi-threaded policy can deal with multiple requests concur-
rently. A common method of implementing multi-threaded policies is to define a thread
pool, from which free threads are picked to process incoming requests and requests are
queued if the pool is exhausted.

Object requests need to be synchronized, because client and server objects may exe-
cute in parallel. Object middleware support different synchronization primitives, which
determine how client and server objects synchronize during requests. Synchronous re-
quests block the client object until the server object processes the request and returns the
results of the requested operation. This is the default synchronization primitive not only
in CORBA, but also in RMI and COM. Deferred synchronous requests unblock the client
as soon as it has made the request. The client achieves completion of the invocation as
well as the collection of any return values by polling the server object. With a oneway
request there is no value returned by the server object. The client regains control as soon
as the middleware received the request and does not know whether the server executed
the requested operation or not. Asynchronous requests return control to the client as soon
an invocation is made. After the invocation the client object is free to do other tasks or
request further operations. The result of the method invocation is returned in a call back
from the server to the client. We note that CORBA supports all these primitives directly.
In [5], its shown how the CORBA primitives can be implemented using multiple client
threads in Java/RMI and Microsoft’s COM.

The main contributionsof this paper are firstly an identification of an important class
of liveness problems in distributedobject systems. We use the example scenario to demon-
strate how particular combinations of synchronization primitives and threading policies
in CORBA can lead to deadlocks. Secondly, we exploit the fact that object middleware
only has a few built-in synchronization and threading primitives and express these as
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stereotypes in dynamic UML models. Thirdly, we define the semantics of these stereo-
types by mapping stereotyped UML models to a process algebra. Finally, we show how
model checking techniques available for these process algebra notations are able to de-
tect the possibility of deadlocks and how their results can be related back to the UML
models.

Application developers need to verify their design specifications for absence of any
deadlock situations. We aim to develop a CASE tool that takes in such design specifi-
cations, from which we generate a process algebra specification which is then analysed
for deadlock. This approach has the advantage of detecting deadlocks in the design stage
of development compared to the traditional way of attempting it during the later testing
phase. Early indications of potential deadlock situations will make the process of design
and implementation modifications more efficient.

In Section 2, we will define UML stereotypes to express both the threading policies
and the synchronization primitives of distributed object middleware. In Section 3, we
explain informally how a deadlock occurs in the running example. We then define the
semantics of our threading and synchronization stereotypes using FSP, a process alge-
bra representation [9] in Section 4. We explain in Section 5 how we use this semantics
definition to generate an FSP process model from a UML Sequence Diagram. Section 6
discusses how compositional reachability analysis can be used to check for presence or
absence of deadlocks in our Sequence diagrams. Section 7 concludes our paper by sum-
marizing the main results and indicating future directions of this research.

2 Modelling Distributed Object Interactions

Rather than proposing to use new or complex notations and tools we have chosen the
Unified Modelling Language to model object interactions and their class structures. UML
is widely accepted and used in industry and allows us to enrich its notation to accomo-
date the extra semantics required for model checking. In this section we will look at mod-
elling the described example, with an aim of using it for deadlock detection later in the
paper.

Stereotypes provide designers with the means of augmenting basic UML models to
include the semantic information required to model the synchronization behaviour in an
application design. We have separated the stereotypes into two main groups. The first
group deals with the synchronization primitives used by a client to request the services
of a server object. The second group involves threading policies used on the server-side.
These policies determine how server objects deal with multiple concurrent requests.

The hhSynchronousii stereotype represents the synchronous request primitive re-
quest, whilst the hhDeferredSynchronousii stereotype is used to indicate a deferred-
synchronous request being made on a server object. hhAsynchronousii is used to in-
dicate an asynchronous client request and a hhOneWayii stereotype represents a oneway
request. Similarly on the server-side, we have defined the hhsingleThreadedii streo-
type to indicate that a particular server object uses a single threaded policy to deal with
incoming service requests and the hhmultiThreadedii stereotype shows that the server
object handles multiple service requests by using multi-threading techniques.
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The class diagrams in Figures 1 and 2 show the main object types involved in gath-
ering patient data and communicating it to a health care centre database. Note that the
design diagrams mainly address distributed communication. Issues such as the user in-
terface need to be looked at separately and are of no concern here.

HeartBeatSensor
<<singleThreaded>>

PressureSensor
<<singleThreaded>>

EncryptionUnit
<<singleThreaded>>

SensorDevice
<<singleThreaded>>

AlertorDevice
<<singleThreaded>>

ClientControlUnit
<<singleThreaded>>

1..1

1..1

1..1

1..1

1..1

1..*

1..1

1..*

1..11..1 1..11..1

Fig. 1. UML class diagram of the Client

SensorDevice is an abstract type for all types of medical sensor devices attached to
patients. HeartBeatSensor and PressureSensor are two concrete object types in-
heriting from the SensorDevice class. The AlertorDevice represents the device that
a patient activates to get medical attention. The ClientControlUnit is used by sensor
devices to send updates and alert messages to the health care centre server. EncryptionUnit
ensures a secure communication channel as well as providinga non-repudiation service,
which will be used when charging patients for services.

All patient data are stored in a central database at the health care centre. All incoming
data from patients are logged and appropriate updates are made to the central database.
ServerControlUnit is the main co-ordinator class on the server side. This type is re-
sponsible for communicating information between the patients and the health care cen-
tre, and its capable of servicing several patients simultaneously. In order to obtain this
parallelism, it uses a multi-threading technique. The DBThreadPool represents a fixed-
size collection ofDBDriverThread objects, which it manages. Each time the ServerControlUnit
receives a message from a patient it asks the DBThreadPool object to provide a free
DBDriverThread, to which it delegates the task of processing the message. The dele-
gated DBDriverThread object makes any required amendments to the central database
and sends back any messages through the ServerControlUnit . Upon completion of
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Fig. 2. UML class diagram of the Server

a task the DBDriverThread object reports back to the DBThreadPool objects and is
deemed free once again. In the case of having no free DBDriverThread objects the
ServerControlUnit will store all new incoming messages in the AccessQueue ob-
ject. As the DBDriverThread objects start becoming free again, messages can be de-
queued from the AccessQueue object and serviced, in a first-in-first-out order. In the
event of all DBDriverThread object being occupied and the AccessQueue being at
full capacity the ServerControlUnit will have to reject any messages which it re-
ceives.

Class diagrams are used to describe the structure and hierarchy in a design, thus con-
tainingstatic information. Whilst a sequence diagram represents a given scenario of how
instances of classes interact with each other, thus containing dynamic information. The
sequence diagram in Figure 3 describes the interactions of a HeartBeatSensor object
to update informationof a health care centre. Due to lack of space the EncryptionUnit
has not been included in the sequence diagram, but its exemption does not alter the be-
haviour.

3 Deadlock in Distributed Object Systems

The source of a deadlock is often a cyclic wait-for relation between communicating com-
ponents. The complex communication patterns between software components and a need
to control the way their shared resources are accessed via methods such as mutual ex-
clusion, gives way to deadlock vulnerabilities. This coupled with the inherent parallelism
present in distributed systems, makes deadlock situations a likely and difficult problem
to resolve. In fact, the default synchronization primitive and threading policy used in
middleware systems, namely the synchronous request and the single threaded policy,
are the most likely combination to bring about deadlock.
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Fig. 3. Sequence diagram of a routine sensor update

The sequence diagram shown in Figure 3 actually results in a deadlock. First the
HeartBeatSensor device sends an update through the ClientControlUnit , in the
form of a synchronous request. Upon arrival on the server-side a DBDriverThread in-
stance is assigned to deal with this message. Control is not returned back to the client
until the DBDriverThread has finished processing the request. The DBDriverThread
concludes that a soft reset of the sensor device is required and so it sends the reset com-
mand by invoking a synchronous request to the HeartBeatSensor object. Thus we
have a case where the Client is blocked waiting for a response from the DBDriverThread
and vice versa, thus causing a deadlock chain. This deadlock is not easily spotted, be-
cause as mentioned before the threading behaviour is determined at a type-level of ab-
straction and the synchronization behaviour is modelled at an instance level of abstrac-
tion. Only the combined knowledge of the two allows designers to consider the liveness
issues. In order to demonstrate the idea we kept the interaction small. But the reader
should note that such a detection would have been a lot more difficult in a real world
industrial case, where the number of objects involved in an interaction may be consid-
erably larger.

Deadlocks are inherently difficult to detect due to the large number of factors af-
fecting the probability of their occurrence. Factors such as varying hardware resources
and a wide range of possible user inputs creates a large number of scenarios to run an
application. The conventional testing approach creates a test case for each of the likely
scenarios in which the application is thought to be used under. The test cases are then
executed and their results are compared with predefined expected results. Moreover, dis-
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tributed applications make the task of testing more difficult by adding new dimensions
of complexity. Prime examples of such complexities are hardware heterogeneity, a lack
of global memory and physical clock and absence of bounds on transmission delays. We
argue that the exponential growth in likely scenarios makes the conventional methods
of testing much less effective and scalable. We argue that model checking provides a
suitable method of overcoming this complexity dilemma as well tackling it with a rigour
and thoroughness that cannot be expected from a human being.

4 Semantics of Stereotypes

A process algebra was chosen to define the semantics of the stereotypes ahead of alter-
natives such as denotational and axiomatic models, since it provides a more powerful
mathematical model of concurrency. Process algebra operators offer direct support for
modelling the inherent parallelism in distributed systems. The syntax allows for hierar-
chical description of processes, a valuable feature for compositional reasoning, verifica-
tion and analysis.

Fig. 4. Relation of FSP to design modelling

Figure 4 further demonstrates the reasoning behind choosing a process algebra for
modelling the semantics of stereotypes. We are specifically referring to the FSP [9] pro-
cess algebra. We would like to generate FSP specification from stereotyped UML mod-
els. There are liveness properties which the designer would like to have in these models
such as deadlock safety, which are directly supported by the liveness properties exper-
essed in FSP.

The CORBA Notification Service [13] uses an architectural element called an Event
Channel which allows messages to be transferred between suppliers and consumers of
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events. This service offers added capabilities such as being able to choose a level of
Quality of Service and event filtering at the server-end. All client/server interactions in
Figure 3 are taking place through such Channel objects. The generated FSP must exactly
follow the semantic behaviour of the synchronization primitives and threading policies
as outlined in Section 1.

4.1 Synchronization Primitives

The process algebra model in Figure 5 defines the hhSynchronousii stereotype seman-
tic of requests. The Client process engages in an action SendRequest and does not
return until it receives a reply using the ReceiveReply action. By using relabelling we
have synchronized the Client SendRequest with the Channel ReceiveRequest and
the Client ReceiveReply with the Channel SendReply . So by making the Channel
process engage in a SendReply action only after receiving a reply from the server, we
define the hhsynchronousii stereotype.

Client=(SendRequest->ReceiveReply->Client).

Channel=(ReceiveRequest->RelayRequest->ReceiveReply->
SendReply->Channel).

||System=(c:Client || a:Channel)
/{c.SendRequest/a.ReceiveRequest,
c.ReceiveReply/a.SendReply}.

Fig. 5. Process Algebra Definition of Synchronous Stereotype

The process algebra model in Figure 6 defines the hhDeferredSynchronous ii stereo-
type request semantic. The Client process invokes a request by engaging in actionpush _sendRequest
which is synchronized with the push ReceiveReply. The WaitTime constant defines
the number of time units that the Client process continues executing before blocking
to receive any results from the server. The Client is unblocked when the Channel pro-
cess engages in action push sendReply, which is called only when the server returns
a result to the Channel.

4.2 Threading Policies

The FSP representation in Figure 7 defines the semantics of a server that uses a thread
pool policy to handle multiple concurrent requests. The total number of slave threads
and queue slots are specified as constants at the beginning. The server-side is composed of
four processes, representing the slave thread, thread pool, queue and the server. The pro-
cesses have synchronization points where they share the same action name. The Server
process uses two variables to keep track of the current size of the queue and the number
of threads currently in use. The server ReceiveRequest action indicates the arrival of a
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const WaitTime=3
range T = 0..WaitTime

Client = (push_SendRequest->Client[0]),
Client[i:T]= if (i<WaitTime) then (execute->Client[i+1])

else (push_ReceiveReply -> Client).

Channel=(push_ReceiveRequest->push_SendRequest->push_ReceiveReply->
push_SendReply->Channel).

||System=(c:Client || a:Channel)
/{c.push_SendRequest/a.push_ReceiveRequest,
c.push_ReceiveReply/a.push_SendReply}.

Fig. 6. Process Algebra Definition of the Deferred Synchronous Stereotype

client request, if there are any available threads the synchronised actiongetFreeThread
is taken which starts the ThreadPool process. This further causes the Thread pro-
cess to be initiated using the shared delegateTask action. Once the request has been
serviced the responsible Thread process engages in a ReceiveReply action which is
shared with the Channel process, causing the results to be sent back to the client. If
the number of used has reached the maximum the server attempts to add the message to
the queue. This addToQueue succeeds if there are free queue slots left, otherwise the
message is being rejected.

5 Generating FSP Models From UML Diagrams

We have identified a fixed number of synchronization primitives and threading poli-
cies used in mainstream object-oriented middleware systems. From these we obtain a
fixed number of combinations in which they can be formed. We have defined the FSP
specification for the semantics of each synchronization primitive and threading policy
as demonstrated in section 4. The CASE tool will take as input, UML models enriched
with stereotypes and translate them into a FSP specification. In order to achieve this we
have to absorb information from two levels of abstraction, namely the type level and
the instance level. The threading behaviour are specified in class diagrams with the aid
of stereotypes whereas the synchronization behaviour is modelled in the interaction dia-
grams. The interaction between clients and server objects will involve a combination of
synchronization primitives and threading policies. Thus the corresponding FSP specifi-
cation will need to be formed from combining specification of a specific synchronization
primitive with that of a threading policy. For example the FSP specification for the inter-
action between the Channel object A and the ServerControlUnit object in Figure 3
is formed by combining the specification in Figures 5 and 7. XMI  will be used as
the intermediate form, for the transition of input UML models into FSP specification.
Research implementations for the UML to XMI transition [12] are well under progress
and will benefit us.
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const PoolSize=16
const QueueSize = 10
range T=0..PoolSize
range Q=0..QueueSize

Channel=(
push_ReceiveRequest->push_SendRequest->push_ReceiveReply
->push_SendReply->Channel).

Thread=(delegateTask->taskExecuted->push_ReceiveReply->Thread).

ThreadPool = ThreadPool[0],
ThreadPool[i:T] = if (i<PoolSize) then

(getFreeThread->delegateTask->ThreadPool[i+1]
| taskExecuted -> ThreadPool[i-1])

else (noFreeThreads -> ThreadPool[i]).

Queue = Queue[0],
Queue[j:Q] = if (j<QueueSize) then (

inspectQueue-> if(j>0) then (dequeueMessage-> Queue[j-1]
| addToQueue[j] -> Queue[j+1])

else (addToQueue[j] -> Queue[j+1]))
else (rejectMessage -> Queue[j]).

Server = Server[0][0],
Server[i:T][j:Q]=(
push_ReceiveRequest->
if (i<PoolSize) then (

getFreeThread-> Server[i+1][j])
else

(noFreeThreads->
if (j<QueueSize) then (addToQueue[j]->Server[i][j+1])
else (rejectMessage-> Server[i][j]))).

||System=(a:Channel||s:Server||s:ThreadPool||s:Thread||s:Queue)
/{a.push_SendRequest/s.push_ReceiveRequest,

a.push_ReceiveReply/s.push_SendReply}.

Fig. 7. Semantics Definition of ThreadPool Stereotype
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6 Detecting Deadlocks By Model Checking

Once we have derived the FSP specification, we can use a model checker to do an ex-
haustive search for deadlocks. The Labelled TransitionSystem Analysis tool that is avail-
able for FSP performs a compositional reachability analysis [2] in order to compute the
complete state space of the model. This tool operates by mapping the specification into
a Labelled Transition System [11]. A deadlock is detected by looking for states with in-
going but no outgoing transitions.

In the case of a deadlock detected, the LTSA will provide us with a trace of actions
leading to the deadlock. From this trace we can single out the starting and ending link in
the deadlock chain. In FSP terminology these links are processes and withineach process
we can find the actual action statement leading to deadlock. Figure 8 shows the output
produced by the LTSA when processing the FSP specification of the example we have
been discussing through out this paper. This FSP specification is formed by combining
the specifications in Figures  5 and  7. As you can see the composition time is fairly
quick, however the state space of the output is very large and its rate of growth is well
above a linear relationship.

State Space:
4 * 4 * 4 * 385 * 33 * 9 * 21 * 3 = 461039040
Composing
potential DEADLOCK
States Composed: 10 Transitions: 9 in 10ms

Fig. 8. Output of the LTSA for the discussed example

7 Related Work

Process algebra representations, such as CSP [8], CCS [10], the�-calculus [11] or FSP [9]
can be used to model the concurrent behaviour of a distributed system. Tools, such as
the Concurrency workbench [3] or the Labelled Transition System Analyzer available
for FSP can be used to check these models for violations of liveness or safety properties.
The problem with both these formalisms and tools is, however, that they are difficult to
use for the practitioner and that they are general purpose tools that do not provide built-in
support for the synchronization and activation primitives that current object middleware
supports.

Many architecture description languages support the explicit modelling of the syn-
chronizationbehaviour of connectors by means of which components communicate [14].
Wright [1], for example uses CSP for this purpose. A main contribution of [4] is the ob-
servation that connectors are most often implemented using middleware primitives. In
our work, we exploit the fact that every middleware only supports a very limited set of
connectors, which can be provided to practitioners as stereotypes that are very easy to
use.

11



In [7] CCS is used to define the semantics of CORBA’s asynchronous messaging.
The paper however, fails to realize that the synchronization behaviour alone is insuffi-
cient for model checking as deadlocks can be introduced and resolved by the different
threading policies that the object adapters support.
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