
Performance Testing of Distributed
Component Architectures

Giovanni Denaro1, Andrea Polini2, and Wolfgang Emmerich3

1 Università di Milano-Bicocca, Dipartimento di Informatica Sistemistica e
Comunicazione, via Bicocca degli Arcimboldi 8, I-20126 Milano, Italy. Email:
denaro@disco.unimib.it

2 Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”, Area di
Ricerca del CNR di Pisa, via Moruzzi 1, I-56124 Pisa, Italy. Email:
andrea.polini@isti.cnr.it

3 University College London, Department of Computer Science, Gower street,
WC1E 6BT London, UK. Email: w.emmerich@cs.ucl.ac.uk

Summary. Performance characteristics, such as response time, throughput and
scalability, are key quality attributes of distributed applications. Current practice,
however, rarely applies systematic techniques to evaluate performance characteris-
tics. We argue that evaluation of performance is particularly crucial in early devel-
opment stages, when important architectural choices are made. At first glance, this
contradicts the use of testing techniques, which are usually applied towards the end
of a project. In this chapter, we assume that many distributed systems are built
with middleware technologies, such as the Java 2 Enterprise Edition (J2EE) or the
Common Object Request Broker Architecture (CORBA). These provide services
and facilities whose implementations are available when architectures are defined.
We also note that it is the middleware functionality, such as transaction and per-
sistence services, remote communication primitives and threading policy primitives,
that dominates distributed system performance. Drawing on these observations, this
chapter presents a novel approach to performance testing of distributed applications.
We propose to derive application-specific test cases from architecture designs so that
the performance of a distributed application can be tested based on the middleware
software at early stages of a development process. We report empirical results that
support the viability of the approach.

1 Introduction

Various commercial trends have led to an increasing demand for distributed
applications. Firstly, the number of mergers between companies is increasing.
The different divisions of a newly merged company have to deliver unified
services to their customers and this usually demands an integration of their
IT systems. The time available for delivery of such an integration is often so
short that building a new system is not an option and therefore existing system

2 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

components have to be integrated into a distributed system that appears as
an integrating computing facility. Secondly, the time available for providing
new services is decreasing. Often this can only be achieved if components are
procured off-the-shelf and then integrated into a system rather than built from
scratch. Components to be integrated may have incompatible requirements for
their hardware and operating system platforms; they have to be deployed on
different hosts, forcing the resulting system to be distributed. Finally, the
Internet provides new opportunities to offer products and services to a vast
number of potential customers. The required scalability of e-commerce or e-
government sites cannot usually be achieved by centralised or client-server
architectures but demand the use of distributed software architectures.

In the context of this chapter, we take the perspective of the producer
of a component-based system, who is interested in devising systematic ways
to ascertain that a given distributed software architecture meets the perfor-
mance requirements of their target users. Performance can be characterised in
several different ways. Latency typically describes the delay between request
and completion of an operation. Throughput denotes the number of opera-
tions that can be completed in a given period of time. Scalability identifies
the dependency between the number of distributed system resources that can
be used by a distributed application (typically number of hosts or processors)
and latency or throughput. Despite the practical significance of these various
aspects it is still not adequately understood how to test the performance of
distributed applications.

Weyuker and Vokolos reported on the weakness of the published scientific
literature on software performance testing in [29]. To this date no significant
scientific advances have been made on performance testing. Furthermore the
set of tools available for software performance testing is fairly limited. The
most widely used tools are workload generators and performance profilers that
provide support for test execution and debugging, but they do not solve many
unclear aspects of the process of performance testing. In particular, researchers
and practitioners agree that the most critical performance problems depend
on decisions made in the very early stages of the development life cycle, such
as architectural choices. Even though iterative and incremental development
has been widely promoted [20, 6, 13], the testing techniques developed so far
are very much focused on the end of the development process.

As a consequence of the need for early evaluation of software performance
and the weakness of testing, the majority of research efforts has focused on
performance analysis models [1, 22, 21, 2, 3, 10] rather than testing tech-
niques. This research shares in general the approach of translating architec-
ture designs, mostly given in the Unified Modeling Language (UML [5]), to
models suitable for analysing performance, such as, Layered Queuing Net-
works (e.g. [21]), Stochastic Petri Nets (e.g. [2]) or stochastic process algebras
(e.g. [22]). Estimates of performance are used to reveal flaws in the original
architecture or to compare different architectures and architectural choices.
Although models may give useful hints of the performance and help identify

Performance Testing of Distributed Component Architectures 3

bottlenecks, they still tend to be rather inaccurate. Firstly, models generally
ignore important details of the deployment environment. For example, per-
formance differences may be significant when different databases or operating
systems are used, but the complex characteristics of specific databases and
operating systems are very seldom included in the models. Secondly, models
often have to be tuned manually. For example, in the case of Layered Queued
Networks, solving contention of CPU(s) requires, as input, the number of CPU
cycles that each operation is expected to use. Tuning of this type of parame-
ters is usually guessed by experience and as a result it is not easy to obtain
precise models.

With the recent advances in distributed component technologies, such as
J2EE [24] and CORBA [19], distributed systems are no longer built from
scratch [8]. Modern distributed applications often integrate both off-the-shelf
and legacy components, use services provided by third-parties, such as real-
time market data provided by Bloomberg or Reuters, and rely on commer-
cial databases to manage persistent data. Moreover, they are built on top of
middleware products (hereafter referred to as middleware), i.e., middle-tier
software that provides facilities and services to simplify distributed assembly
of components, e.g., communication, synchronisation, threading and load bal-
ancing facilities and transaction and security management services [9]. As a
result of this trend, we have a class of distributed applications for which a
considerable part of their implementation is already available when the archi-
tecture is defined, for example during the Elaboration phase of the Unified
Process. In this chapter, we argue that this enables performance testing to be
successfully applied at an early stage.

The main contribution of this chapter is the description and evaluation of a
method for testing performance of distributed software in an early stage of de-
velopment. The method is based on the observation that the middleware used
to build a distributed application often determines the overall performance of
the application. For example, middleware and databases usually contain the
software for transaction and persistence management, remote communication
primitives and threading policies, which have great impact on the different as-
pects of performance of distributed systems. However, we note that only the
coupling between the middleware and the application architecture determines
the actual performance. The same middleware may perform very differently in
the context of different applications. Based on these observations, we propose
using architecture designs to derive application-specific performance test cases
that can be executed on the early available middleware platform a distributed
application is built with. We argue that this allows empirical measurements
of performance to be successfully done in the very early stages of the de-
velopment process. Furthermore, we envision an interesting set of practical
applications of this approach, that is: evaluation and selection of middleware
for specific applications; evaluation and selection of off-the-shelf components;
empirical evaluation and comparison of possible architectural choices; early

4 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

configuration of applications; evaluation of the impact of new components on
the evolution of existing applications.

The chapter is further structured as follows. Section 2 discusses related
work and highlights the original aspects of our research. Section 3 gives de-
tails of our approach to performance testing. Section 4 reports about the
results of an empirical evaluation of the main hypothesis of our research, i.e.,
that the performance of distributed application can be successfully measured
based on the early-available components. Section 5 discusses the limitations of
our approach and sketches a possible integration with performance modelling
techniques. Finally, Section 6 summarises the contributions of the chapter and
sketches our future research agenda.

2 Related Work

In this section, we briefly review related work in the areas of performance
testing of distributed applications and studies on the relationships between
software architecture and middleware.

2.1 Performance Testing of Distributed Applications

Some authors exploited empirical testing for studying the performance of mid-
dleware products. Gorton and Liu compare the performance of six different
J2EE-based middleware implementations [11]. They use a benchmark appli-
cation that stresses the middleware infrastructure, the transaction and direc-
tory services and the load balancing mechanisms. The comparison is based on
the empirical measurement of throughput per increasing number of clients.
Similarly, Avritzer et al. compare the performance of different ORB (Object
Request Broker) implementations that adhere to the CORBA Component
Model [14]. Liu et al. investigate the suitability of micro-benchmarks, i.e.,
light-weight test cases focused on specific facilities of the middleware, such
as, directory service, transaction management and persistence and security
support [15]. This work suggests the suitability of empirical measurement for
middleware selection, i.e, for making decisions on which middleware will best
satisfy the performance requirements of a distributed application. However,
as Liu et al. remark in the conclusions of their paper ([15]), “how to incor-
porate application-specific behaviour in the equations and how far the results
can be generalised across different hardware platforms, databases and oper-
ating systems, are still open problems.” Our research tackles these problems.
We study application-specific test cases for early performance evaluation (or
also comparing) the performance of distributed applications in specific deploy-
ment environments, which include middleware, databases, operating systems
and other off-the-shelf components.

Weyuker and Vokolos report on the industrial experience of testing the
performance of a distributed telecommunication application at AT&T [29].

Performance Testing of Distributed Component Architectures 5

They stress that, given the lack of historical data on the usage of the tar-
get system, the architecture is key to identify software processes and input
parameters (and realistic representative values) that will most significantly
influence the performance. Our work extends this consideration to a wider
set of distributed applications, i.e., distributed component-based software in
general. Moreover, we aim to provide a systematic approach to test-definition,
implementation and deployment that are not covered in the work of Weyuker
and Vokolos.

2.2 Software Architecture and Middleware

Medvidovic, Dashofy and Taylor state the idea of coupling the modelling
power of software architectures with the implementation support provided
by middleware [16]. They notice that “architectures and middleware address
similar problems, that is large-scale component-based development, but at dif-
ferent stages of the development life cycle.” They propose to investigate the
possibility of defining systematic mappings between architectures and middle-
ware. To this end, they study the suitability of a particular element of software
architecture, the software connector. Metha, Phadke and Medvidovic propose
an interesting classification framework of software connectors [18]. They dis-
tinguish among four types of services provided by connectors for enabling
and facilitating component interactions: Communication, i.e., support to the
transmission of data among components; Coordination, i.e., support to trans-
fer of control among components; Conversion, i.e., support to the interaction
among heterogeneous components; Facilitation, i.e., support to mediations
of the interactions among components (e.g., participation in atomic transac-
tions). A general set of software connector types is identified and classified
in the framework, based on the combination of services that they provide.
Although they draw on similar assumptions (i.e., the relationships between
architecture and middleware), our research and that of Medvidovic et al. have
different goals: We aim at measuring performance attributes of an architecture
based on the early available implementation support (which the middleware is
a significant part of); Medvidovic et al aim at building implementation topolo-
gies (e.g., bridging of middleware) that preserve the properties of the original
architecture. However, the results of previous studies on software connectors
and the possibility of mapping architectures on middleware may be important
references for engineering our approach, as we further discuss in Section 3.2.

3 Approach

In this section, we introduce our approach to early performance testing of
distributed component-based software architectures. We also focus on the as-
pects of the problem that need further investigation. Our long-term goal is to

6 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

provide an automated software environment that supports the application of
the approach we describe below.

Our performance testing process consists of the following phases:

1. Selection of the use-case scenarios (hereafter referred to simply as use-
cases) relevant to performance, given a set of architecture designs.

2. Mapping of the selected use-cases to the actual deployment technology
and platform.

3. Generation of stubs of components that are not available in the early
stages of the development life cycle, but are needed to implement the use
cases.

4. Execution of the test, which in turn includes: deployment of the Applica-
tion Under Test (AUT), creation of workload generators, initialisation of
the persistent data and reporting of performance measurements.

We now discuss the research problems and our approach to solving them
for each of the above phases of the testing process.

3.1 Selecting Performance Use Cases

As it has been noticed by several researchers, such as Weyuker [29], the de-
sign of test suites for performance testing is radically different from the case
of functional testing. In performance testing, the functional details of the test
cases, i.e., the actual values of the inputs, are generally of limited impor-
tance. Table 1 classifies the main parameters relevant to performance testing
of distributed applications. First, important concerns are traditionally asso-
ciated with workloads and physical resources, e.g., the number of users, the
frequencies of inputs, the duration of tests, the characteristics of the disks,
the network bandwidth and the number and speed of CPU(s). Next, it is im-
portant to consider the middleware configuration, for which the table reports
parameters in the case of J2EE-based middleware. Here, we do not comment
further on workload, physical resource and middleware parameters, which are
extensively discussed in the literature [29, 28, 15].

Other important parameters of performance testing in distributed settings
are due to the interactions among distributed components and resources. Dif-
ferent ways of using facilities, services and resources of middleware and de-
ployment environments are likely to yield different performance results. Per-
formance will differ if the database is accessed many times or rarely. A given
middleware may perform adequately for applications that stress persistence
and quite badly for transactions. In some cases, a middleware may perform
well or badly for different usage patterns of the same service. The last row
of Table 1 classifies some of the relevant interactions in distributed settings
according to whether they take place between the middleware and the com-

Performance Testing of Distributed Component Architectures 7

Table 1. Performance parameters

Category Parameter

Workload Number of clients
Client request frequency
Client request arrival rate
Duration of the test

Physical resources Number and speed of CPU(s)
Speed of disks
Network bandwidth

Middleware configuration Thread pool size
Database connection pool size
Application component cache size
JVM heap size
Message queue buffer size
Message queue persistence

Application specific Interactions with the middleware
- use of transaction management
- use of the security service
- component replication
- component migration
Interactions among components
- remote method calls
- asynchronous message deliveries
Interactions with persistent data
- database accesses

ponents, among the components themselves4 or to access persistent data in
a database. In general, the performance of a particular application will be
largely dependent on how the middleware primitives are being used to imple-
ment the application’s functionality.

We argue that Application-specific test cases for performance should be
given such that the most relevant interactions specifically triggered by the
AUT are covered. According to this principle, the generation of a meaning-
ful test suite for performance testing can be based on either of two possible
sources: previously recorded usage profiles or functional cases specified in the
early development phases.

The former alternative is viable in cases of system upgrade. In this sit-
uation, “histories” of the actual usage profiles of the AUT are likely to be
available because of the possibility that they have been recorded in the field.
The synthesis of application specific workloads based on recorded usage pro-

4Although interactions among distributed components map on interactions that
take actually place at the middleware level, they are elicited at a different abstraction
level and thus they are considered as a different category in our classification.

8 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

files is a widely studied and fairly well understood research subject in the area
of synthetic workload generation (e.g.[12, 27]).

When the development of a completely new application is the case, no
recorded usage profile may exist. However, modern software processes tend
to define the required functionality of an application under development in a
set of scenarios and use cases. To build a meaningful performance test suite,
we can associate a weight to each use case and generate a synthetic workload
accordingly. The weight should express the importance of each use case in the
specific test suite. Obviously to have a reliable evaluation of the performance
characteristics of the application, we need to consider as many use cases as
possible. This should be a minor problem because it is often the case that
most of the use cases are available in early stages of a software process. For
instance, the iterative and incremental development approaches (such as the
Unified Software Development Process [6]) demand that the majority of use
cases be available at the end of the early process iterations. In such settings,
we can therefore assume that the software system developer can use these use
cases to derive test cases to evaluate the performance of the final application,
before starting with the implementation phase. On the base of the obtained
results the developer can eventually revise the taken decisions in order to
obtain better “expected” performance. To this end, several possibilities are
available at this stage, (at a less expensive costs with respect to a late system
refactoring, which might be required due to poor performance), such as, a
revision of the architecture or a “re-”calibration of some choices concerning
the middleware configuration.

3.2 Mapping Use Cases to Middleware

In the initial stages of the software process, software architectures are gener-
ally defined at a very abstract level. The early use-cases focus on describing
the business logic, while they abstract the details of the deployment platform
and technology. One of the strengths of our approach is indeed the possibil-
ity of driving software engineers through the intricate web of architectural
choices, off-the-shelf components, distributed component technologies, mid-
dleware and deployment options, keeping the focus on the performance of the
final product. The empirical measurements of performance may provide the
base for comparing the possible alternatives. Consequently, to define a perfor-
mance test case, the abstract use-cases must be augmented with the following
information:

• The mapping between the early available components (if any) and the
components represented in the abstract use-cases;

• The distributed component technology and the actual middleware with
respect to which the performance test is to be performed;

• The characteristics of the deployment of the abstract use-cases on the ac-
tual middleware platform, i.e., the specification of how the described com-

Performance Testing of Distributed Component Architectures 9

ponent interactions take place through the selected component technology
and middleware.

J2EE (JBoss)

App

m1

(a) (b)

m2

DB
:App

m1
m2

MySql DB: DB

Fig. 1. An sample use-case (a) and part of a corresponding performance test case
(b)

The two former requirements can be trivially addressed. For example,
Fig. 1 (a) illustrates a sample abstract use-case, in which an actor accesses
the service m1 provided by the component App, which in turn uses the service
m2 provided by the component DB. Correspondingly, Fig. 1 (b) illustrates a
performance test case in which: the component DB is instanced as the available
MySql database engine, while the component App is not early available; the
whole application is deployed using the J2EE component technology and the
JBoss application server as middleware. The rest of this section discusses the
problem of specifying the deployment characteristics.

At the architectural level, the properties of the component interactions
can be described in terms of software connectors5. Recent studies (e.g., [16])
have investigated the role that software connectors may play in software de-
sign, showing that they may relevantly contribute to bridge the gap between
the high-level application view of a software architecture and the implementa-
tion support provided by distributed component technologies and middleware.
[18] attempts to classify software connectors and identifies a general set of
connector types, their characteristics (dimensions) and the possible practical
alternatives for each characteristic (values). For instance, the procedure call
is identified as a connector type that enables communication and coordination
among components; synchronicity is one of the dimensions of a procedure
call connectors; and synchronous and asynchronous are the possible values

5This is, for example, the spirit of the definition of software connectors given by
Shaw and Garlan [25]: connectors mediate interactions among components; that is,
they establish the rules that govern component interaction and specify any auxiliary
mechanisms required.

10 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

of such dimension. When all dimensions of a connector type are assigned to
specific values, the resulting instance of the connector type identifies a con-
nector specie, e.g., the remote method invocation can be considered as a
specie of the procedure call connector type. Our approach to the specifica-
tion of the deployment characteristics leverages and extends the connector
taxonomy of [18].

Up to now, we identified an initial set of connector types that specifi-
cally apply to the case of component interactions that take place through a
J2EE compliant middleware. Giving values to the dimensions of these connec-
tors allows for specifying the characteristics of the deployment of an abstract
use-case on an actual middleware platform based on the J2EE specification.
Specifically, we identified the following connector types: J2EE remote service,
J2EE distributor, J2EE arbitrator and J2EE data access.

The J2EE remote service connector extends and specialises the procedure
call connector type of [18]. This connector specifies the properties of the mes-
sages that flow among interacting components. We identified the following
relevant dimensions for this connector:

• Synchronicity: A remote service can be either synchronous or asynchronous.
Specifying a value for the synchronicity dimension allows to select if the
service must be instanced as a synchronous method invocation or as an
asynchronous event propagation, respectively.

• Parameters: This dimension specifies the number of parameters and their
expected size in bytes. This allows for simulating the dependences between
performance and the transfer of given amounts of data among components.
Moreover, if the component that provides the service is one of the early
available components, also types and values of the parameters must be
provided to perform the actual invocation during the test. In this latter
case, if the service is expected to be invoked a number of times during the
test, we can embed in the connector a strategy for choosing the values of
the parameters:
1. a single value may be given. This value will be used every time the

service is invoked during the test;
2. a list of values may be given. Each time the service is invoked a value

of the list is sequentially selected;
3. a list of values and an associated probability distribution may be given.

Each time the service is invoked a value of the list is selected sampling
the distribution.

The J2EE distributor connector extends and specialises the distributor
connector type of [18]. This connector allows to specify the deployment topol-
ogy. We identified the following relevant dimensions for this connector:

• Connections: This dimension specifies the properties of the connections
among the interacting components, i.e., the physical hosts on which they

Performance Testing of Distributed Component Architectures 11

are to be deployed in the testing environment and the symbolic names
used to retrieve the component factories through the naming service.

• Types. This dimension specifies the (expected) implementation type of
the interacting components. Possible values are: client application, session
bean, entity bean6 and database table.

• Retrieving. This dimension specifies how to use the component factories
(for components and interactions this is applicable to) for retrieving ref-
erences to components. In particular, either the default or finder method
can be specified (non standard retrieving methods of component factories
are called finders in the J2EE terminology).

The J2EE arbitrator connector extends and specialises the arbitrator con-
nector type of [18]. This connector specifies the participation in transactions
and the security attributes of the component interactions. We identified the
following relevant dimensions for this connector:

• Transactions: This dimension specifies the participation in transactions of
a component interaction. Possible values are: none, starts and participates:
none, if the interaction does not participate in any transaction; starts, if
the interaction starts a new, possible nested, transaction; participates, if
the interaction participates in the transaction of the caller.

• Security: This dimension specifies the security attributes of a component
interaction. In particular, it specifies if services can be accessed by all users,
specific users, or specific user groups, and which component is responsible
for authentication in such two latter cases.

The J2EE data access connector extends and specialises the data access
connector type of [18]. This connector mediates the communication between
J2EE components and a database, specifying the structure of the database
and how the interactions are handled. In particular, we identified the following
relevant dimensions for this connector:

• Tables: This dimension specifies characteristics of the tables and their
respective fields in the database.

• Relationships: This dimension specifies the presence of relationships among
the tables in the database.

• Management: In J2EE components persistence can be handled either im-
plementing the access functions (e.g., queries) in the component code (this
is called bean managed persistence, BMP) or using standard mechanism
embedded in the middleware (this is called container managed persistence,
CMP).
6Session beans are J2EE components that provide business services. Thus, session

beans are often used as the interface between J2EE applications and client applica-
tions. Entity beans are J2EE components that represent persistent data within an
application. Each database table is generally associated to an entity bean. The data
in the entity bean are taken synchronised with the database. Thus, entity bean are
often used as the interface between J2EE applications and databases.

12 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

J2EE (JBoss)

:App MySql DB: DB

m1: J2EE remote service
Synchronicity: synchronous
Parameters: {10bytes}

d1: J2EE distributor
Connections: host1, host2
Types: Client, Session Bean
Retrieving: -, standard

a1: J2EE arbitrator
Transactions: {m1: starts; m2: participates}
Security: {m1: all users; m2: all users}

m2: J2EE remote service
Synchronicity: synchronous
Parameters:
{query: “UPDATE F1 FROM T1 TO 0”}

d2: J2EE distributor
Connections: host2, host2
Types: Entity bean, DBtable
Retrieving: -, standard

da2: J2EE data access
Tables: {T1: integer F1, integer F2}
Relationships: {}
Management: BMP

Fig. 2. A performance test case associated with the use-case in Fig. 1

Fig. 2 illustrates the application of connectors to the sample use-case of
Fig. 1. As specified by the J2EE remote service connectors, the interactions
m1 and m2 are both synchronous (i.e., they are assumed to be remote method
invocations) and have just one input parameter. In the case of m1, only the
parameter size is worth it, being the server component App not early available.
Conversely, in the case of m2, also the actual value of the parameter is needed,
being the database available. The specified parameter is the actual SQL code
to be executed on the database and the “single value” strategy is used. The
assumed database structure is specified in the J2EE data access connector
da2 and consists of a table (T1) with two integer fields (F1 and F2) and no re-
lationship, while the interactions between the component App and the MySql
database are supposed to follow the bean managed persistence paradigm. The
two J2EE distributor connectors, d1 and d2, specify that the component App
and the database are deployed on the same host (host2), while the client is on
a different host (host1). The interface between the client and the component
App is provided by a session bean EJB component and the interface between
App and the database is handled by an entity bean EJB component. The re-
trieving strategy, when applicable, uses the standard methods provided by
the platform. Finally, the J2EE arbitrator connector specifies that m1 starts
a transaction in which m2 participates and no special security policy is con-
sidered. The information given in Fig. 2 identifies a specific performance test
case associated with the use-case in Fig. 1.

Notice that Fig. 2 is meant just for exemplification purpose and not to sug-
gest an approach in which use-case diagrams must be annotated with connec-
tor information before testing. In a mature and engineered version of our ap-
proach, we envision the possibility that a tool analyses the abstract use-cases
and extracts the simple list of alternatives for each interaction dimension. The

Performance Testing of Distributed Component Architectures 13

performance engineer would then have the choice of selecting the best suited
alternatives according to the performance requirements or test different al-
ternatives to find out the one that works best (in a sort of what-if-analysis
fashion). Software connectors provides the reasoning framework towards this
goal. Furthermore, our current knowledge about all needed connector types
and their dimensions is limited because it is based on a simple case in which
we have experimented the application of the approach (Section 4 gives the
details of this initial experience). We believe that we are on the right path,
even though we are aware that further work is still needed to understand the
many dimensions and species of software connectors and their relationships
with the possible deployment technologies and platforms.

3.3 Generating Stubs

So far, we have suggested that early test cases of performance can be derived
from use-cases and that software connectors can be exploited as a means to
establish the correspondence between the abstract views provided by the use-
cases and the concrete instances. However, to actually implement the test
cases, we must also solve the problem that not all the application components
that participate in the use-cases are available in the early stages of the devel-
opment life cycle. For example, the components that implement the business
logic are seldom available, although they participate in most of the use-cases.
Our approach uses stubs in place of the missing components.

Stubs are fake versions of components that can be used instead of the
corresponding components for instantiating the abstract use-cases. In our ap-
proach, stubs are specifically adjusted to use-cases, i.e., different use-cases will
require different stubs of the same component. Stubs will only take care that
the distributed interactions happen as specified and the other components are
coherently exercised. Our idea of the engineered approach is that the needed
stubs are automatically generated based on the information contained in use-
cases elaborations and software connectors. For example, referring once again
to Fig. 2, if the component App is not available, its stub would be implemented
such that it is just able to receive the invocations of the service m1 and con-
sequently invokes the service m2, through the actual middleware. The actual
SQL code embedded in the remote service connector of m2 would be hard-
coded in the stub. As for m1, it would contain empty code for the methods,
but set the corresponding transaction behaviour as specified. Of course, many
functional details of App are generally not known and cannot be implemented
in the stub. Normally, this will result in discrepancies between execution times
within the stubs and the actual components that they simulate.

The main hypothesis of our work is that performance measurements in the
presence of the stubs are good enough approximations of the actual perfor-
mance of the final application. This descends from the observation that the
available components, e.g., middleware and databases, embed the software
that mainly impact performance. The coupling between such implementation

14 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

support and the application-specific behaviour can be extracted from the use-
cases, while the implementation details of the business components remain
negligible. In other words, we expect that the discrepancies of execution times
within the stubs are orders of magnitude less than the impact of the interac-
tions facilitated by middleware and persistence technology, such as databases.
We report a first empirical assessment of this hypothesis in Section 4 of this
chapter, but are aware that further empirical studies are needed.

The generation of the fake version can be made easier if we can use UML
to describe the software architecture. The use of UML enables, in fact, the use
of all the UML-based tools. A first interesting investigation in this direction
can be found in [17]. In this work the authors propose different techniques
to introduce concepts as connectors and architectural styles as a first order
concepts inside an “extended” fully conform UML.

3.4 Executing the Test

Building the support to test execution shall mostly involve technical rather
than scientific problems, at least once the research questions stated above have
been answered. Part of the work consists of engineering the activities of map-
ping the use cases to deployment technologies and platforms, and generating
the stubs to replace missing components. Also, we must automate deployment
and implementation of workload generators, initialisation of persistent data,
execution of measurements and reporting of results.

In particular workload generator can be characterised in several different
way, and many different workload can be found in literature (e.g.[7, 26]). It is a
developer duty to choose the one that better represent the load that it expects
for the application during the normal usage. Then after that the type of
workload have been chosen, for instance from a list of possible different choice,
and that the probability distributions have been associated to the relevant
elements in the particular workload, it is possible to automatically generate
the corresponding “application client” that generate invocations according to
the chosen workload type and distributions.

4 Preliminary Assessment

This section empirically evaluates the core hypothesis of our research, i.e.,
that the performance of a distributed application can be successfully tested
based on the middleware and/or off-the-shelf components that are available in
the early stages of the software process. To this end, we conducted an exper-
iment in a controlled environment. First, we considered a sample distributed
application for which we had the whole implementation available. Then, we
selected an abstract use-case of the application and implemented it as a test
case based on the approach described in Section 3. Finally, we executed the
performance test (with different amounts of application clients) on the early

Performance Testing of Distributed Component Architectures 15

J2EE

Client
Application

Entity
Beans Beans

Session Database
Table

Transactions

Customers

Accounts

EJB Container

Client
Web

Controller
Customer Bean

Transaction Bean

Customers

Transactions
Controller

Accounts

Controller
Account Bean

Fig. 3. The Duke’s Bank application

available components and compared the results with the performance mea-
sured on the actual application.

4.1 Experiment Setting

As for the target application, we considered the Duke’s Bank application pre-
sented in the J2EE tutorial [4]. This application is distributed by Sun under
a public license, thus we were able to obtain the full implementation easily.
The Duke’s bank application consists of 6,000 lines of Java code that is meant
to exemplify all the main features of the J2EE platform, including the use
of transactions and security. We consider the Duke’s bank application to be
adequately representative of medium-size component-based distributed appli-
cations. The Duke’s bank application is referred to as DBApp in the remainder
of this chapter.

The organisation of the DBApp is given in Fig. 3 (borrowed from [4]). The
application can be accessed by both Web and application clients. It consists
of six EJB (Enterprise Java Beans [24]) components that handle operations
issued by the users of a hypothetic bank. The six components can be associated
with classes of operations that are related to bank accounts, customers and
transactions, respectively. For each of these classes of operations a pair of
session bean and entity bean is provided. Session beans are responsible for the
interface towards the users and the entity beans handle the mapping of stateful
components to underlying database table. The arrows represent the possible
interaction patterns among the components. The EJBs that constitute the
business components are deployed in a single container within the application
server (which is part of the middleware). For the experiment we used the
JBoss application server and the MySql database engine, running on the same
machine.

Then, we selected a sample use-case that describes the transfer of funds
between two bank accounts. Fig. 4 illustrates the selected use-case in UML.

16 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

Duke’s Bank Database

Update account_from
Transfer (account_from,

account_to,
amount)

Update account_to

Log transaction of account_from

Log transaction of account_to

Fig. 4. A sample use-case for the Duke’s Bank

A client application uses the service Transfer provided by the DBApp. This
service requires three input parameters, representing the two accounts and
the amount of money, respectively involved in the transfer. The business com-
ponents of the DBApp realize the service using the database for storing the
persistent data: the database is invoked four times, for updating the balances
of the two accounts and recording the details of the corresponding transac-
tions. We assume that the database engine is software that is available early
in the software process. Thus, for the test, we used the same database engine,
table structure and SQL code than in the original application. This is why
we represented the database as a shadowed box in the figure. Differently from
the database, the business components of the DBApp are assumed to be not
available, thus we had to generate corresponding stubs.

For implementing the stubs, we had to map the abstract use-case on the
selected deployment technology, i.e., J2EE. We already commented on the
role that software connectors may play in the mapping. As for the interaction
between the clients and the DBApp, we specified that the service Transfer
is invoked as a synchronous call and starts a new transaction. As for the
interaction between the DBApp and the database, we specified that: the four
invocations are synchronous calls that participate to the calling transaction
and embed the actual SQL code; we set up the database factory such that the
database connection is initialised for each call7; the DBApp uses entity beans
and bean managed persistence to handle the interactions with the database
tables. Based on this information, we implemented the stubs as needed to
realize the interactions in the considered use-case and we deployed the test
version of the DBApp (referred to as DBTest) on the JBoss application server.

Finally, we implemented a workload generator and initialised the persistent
data in the database. The workload generator is able to activate a number
of clients at the same time and takes care of measuring the average response

7Although this may sound as a bad implementation choice, we preferred to main-
tain the policy of the original application to avoid biases on the comparison.

Performance Testing of Distributed Component Architectures 17

time. For the persistent data, we instantiated the case in which each client
withdraws money from its own account (i.e., there exists a bank account for
each client) and deposits the corresponding amount to the account of a third
party, which is supposed to be the same for all clients. This simulates the
recurrent case in which a group of people is paying the same authority over
the Internet. Incidentally, we notice that, in an automated test environment,
initialisation of persistent data would only require to specify the performance
sensible part of the information, while the actual values in the database tables
are generally of little importance. For example, in our case, only the number
of elements in each table and the relationships with the instanced use-case,
i.e., whether all clients access the same or a different table row, are the real
concerns.

With reference to the performance parameters of Table 1, we generated
a workload, to test both DBApp and DBTest, with increasing numbers of
clients starting from one to one hundred. The two applications were deployed
on a JBoss 3.0 application server running on a PC equipped with a Pentium
III CPU at 1 GHz, 512 MB of RAM memory and the Linux operating system.
To generate the workload we run the clients on a Sun Fire 880 equipped with
4 Sparc CPUs at 850 MHz and 8 GB of RAM. These two machines were con-
nected via a private local area network with a bandwidth of 100 MBit/sec.
For the stubs we used the same geographical distances as the components
of the actual application. Moreover, in order to avoid influences among the
experiments that could be caused by the contemporary existence of a lot of ac-
tive session beans, we restarted the application server between two successive
experiments. JBoss has been used running the default configuration. Finally,
the specific setting concerning the particular use case, as already discussed in
the previous paragraphs, foresaw the use of remote method calls between the
components and the use of the transaction management service, in order to
handle the data shared by the various beans consistently.

4.2 Experiment Results

We have executed both DBApp and DBTest for increasing numbers of clients
and measured the latency for the test case. We repeated each single experiment
15 times and measured the average latency time. Fig. 5 shows the results of
the experiments. It plots the latency time of both DBApp and DBTest against
the number of clients, for all the repetitions of the experiment. We can see that
the two curves are very near to each other. The average difference accounts
for the 9.3% of the response time. The experiments also showed a low value
for the standard deviation. The ratio between σ and the expectation results,
in fact, definitively lower of the 0.15, both for the DBApp and for the DBTest.

The results of this experiment suggest the viability of our research because
they witness that the performance of the DBApp in a specific use-case is well
approximated by the DBTest, which is made out of the early-available compo-
nents. However, although the first results are encouraging, we are aware that a

18 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

Fig. 5. Latency of DBApp and DBTest for increasing numbers of clients

single experiment cannot be generalised. We are now working on other exper-
iments to cover the large set of alternatives of component-based distributed
applications. We plan to experiment with different use-cases, sets of use-cases
for the same test case, different management schemas for transactions and
performance, different communication mechanisms such as asynchronous call,
J2EE-based application server other than JBoss, CORBA-based middleware,
other commercial databases and in the presence of other early-available com-
ponents.

5 Scope and Extensions

Our results support the possibility that using stubs for the application code,
but the real middleware and database proposed for the application, can pro-
vide useful information on the performance of a distributed application. This
is particularly true for enterprise information system applications that are
based on distributed component technologies, such as J2EE and CORBA. We
have already commented that for this class of distributed applications the
middleware is generally responsible for most of the implementation support
relevant to performance, e.g., mechanisms for handling distributed communi-
cation, synchronisation, persistence of data, transactions, load balancing and
threading policies. Thus in most cases critical contention of resources and
bottlenecks happen at the middleware level, while the execution time of the
business components is negligible.

Our approach allows providers of this class of distributed applications to
test whether, and to which extent, a given middleware may satisfy the per-
formance requirements of an application that is under development. In this
respect, our approach may perform better than pure benchmarking of middle-

Performance Testing of Distributed Component Architectures 19

ware (e.g., [11, 14, 15]), because it enables application-specific evaluation, i.e.,
it generates test cases that take into account the specific needs of a particular
business logic and application architectures. Moreover, the approach has a
wider scope than solely testing the middleware. It can be generalised to test
all components that are available at the beginning of the development pro-
cess, for example, components acquired off-the-shelf by third parties. Based
on the empirical measurements of performance, tuning of architectures and
architectural choices may also be performed.

Despite these valuable benefits, however, we note that our approach cannot
identify performance problems that are due to the specific implementation of
late-available components. For example, if the final application is going to have
a bottleneck in a business component that is under development, our approach
has no chance to discover the bottleneck that would not be exhibited by a stub
of the component. Performance analysis models remain the primary reference
to pursue evaluation of performance in such cases.

Currently, we are studying the possibility of combining empirical testing
and performance modelling, aiming at increasing the relative strengths of each
approach. In the rest of this section we sketch the basic idea of this integration.

One of the problem of applying performance analysis to middleware-based
distributed systems is that the middleware is in general very difficult to rep-
resent in the analysis models. For instance, let us consider the case in which
one wants to provide a detailed performance analysis of the DBApp, i.e., the
sample application used in Section 4. To this end, we ought to model the
interactions among the business components of DBApp as well as the compo-
nents and processes of the middleware that interact with DBApp. The latter
include (and are not limited to) component proxies that marshal and unmar-
shal parameters of remote method invocations, the transaction manager that
coordinates distributed transactions, the a database connectivity driver that
facilitates interactions with the database, and the processes for automatic
activation and deactivation of objects or components. Thus, although the ap-
plication has a simple structure, the derivation of the correspondent analysis
model becomes very costly.

We believe that this class of issues can be addressed by combining empirical
testing and performance modelling according to the following process:

1. The analysis model is built and solved, abstracting from the presence of
the middleware. The resulting model will generally have a simple struc-
ture.

2. Empirical testing is used to simulate the results of the model (e.g., fre-
quency of operations) on the actual middleware, thus computing how the
execution of the middleware and the contention of resources within the
middleware affects the performance characteristics of the modelled inter-
actions (e.g., the response time of a given operation may increase because
it involves middleware execution).

3. Model parameters are tuned according to the testing results.

20 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

Fig. 6. A sample LQN model for DBApp

4. The process is repeated until the model stabilises.

For instance, Fig. 6 shows a Layered Queuing Network (LQN) correspond-
ing to the use-case of Fig. 4. A detailed description of LQN models is beyond
the scope of this chapter, and we refer interested readers to [21]. The layers in
Fig. 6 represent the main interacting components, i.e., the client, the applica-
tion and the database. Each component may be present in a number of copies
(or threads). White boxes represent the services that each layer provides (lim-
ited to services of interest for the considered use-case). Connections between
white boxes indicate client-server relationships between services, with arrows
pointing to servers. In the specific case represented in the figure, clients inter-
act with the application through the moneyTransfer service, which in turn
uses services of the database layer to update accounts and log transaction
details. Other important parameters of the model that are not indicated in
the figure include: the number of calls for each service (for example, both the
database services are used twice in the considered case), the CPU and the
CPU-time used by each service and the service thinking-times.

Although the middleware is not explicitly represented in the model, it is
involved in the execution of each service and affects, for example, the ideal
CPU-time and thinking-time. Once empirical measurements are available, the
parameters of the LQN model can be tuned accordingly. On the other hand,
by solving the model we can compute the frequency of invocations of each
service for different numbers of clients. Thus, we can generate the test cases
for the middleware accordingly.

The cost of the approach depends on the number of iterations of the pro-
cess. We expect models to stabilise in a few iterations. However, experimental
evidence of this is still missing and further work is required to understand
costs and benefits of the integrated approach.

Performance Testing of Distributed Component Architectures 21

6 Conclusions and Future Work

Distributed component technologies enforce the use of middleware, commer-
cial databases and other off-the-shelf components and services. The software
that implements these is available in the initial stages of a software process
and moreover it generally embeds the software structures, mechanisms and
services that mostly impact the performance in distributed settings. This
chapter proposed to exploit the early availability of such software to accom-
plish empirical measurement of performance of distributed applications at
architecture-definition-time. To the best of our knowledge, the approach pro-
posed in this chapter is novel in software performance engineering.

This chapter fulfilled several goals. It discussed the published scientific
works related to ours, thus positioning our ideas in the current research land-
scape. It described a novel approach to performance testing that is based on
selecting performance relevant use-cases from the architecture designs, and
instantiating and executing them as test cases on the early available software.
It indicated important research directions towards engineering such approach,
i.e.: The classification of performance-relevant distributed interactions as a
base to select architecture use-cases; The investigation of software connectors
as a mean to instantiate abstract use-cases on actual deployment technologies
and platforms. It reported on experiments that show as the actual perfor-
mance of a sample distributed application is well approximated by measure-
ments based only on its early available components, thus supporting the main
hypothesis of our research. It finally identified the scope of our approach and
proposed a possible integration with performance modelling techniques aimed
at relaxing its limitations.

Software performance testing of distributed applications has not been thor-
oughly investigated so far. The reason for this is, we believe, that testing
techniques have traditionally been applied at the end of the software process.
Conversely, the most critical performance faults are often injected very early,
because of wrong architectural choices. Our research tackles this problem sug-
gesting a method and a class of applications such that software performance
can be tested in the very early stages of development. In the long term and as
far as the early evaluation of middleware is concerned, we believe that empiri-
cal testing may outperform performance estimation models, being the former
more precise and easier to use. Moreover, we envision the application of our
ideas to a set of interesting practical cases:

• Middleware selection: The possibility of evaluating and selecting the
best middleware for the performance of a specific application is reckoned
important by many authors, as we already pointed out in Section 2 of this
chapter. To this end, our approach provides a valuable support. Based on
the abstract architecture designs, it allows to measure and compare the
performance of a specific application for different middleware and middle-
ware technologies.

22 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

• COTS selection: A central assumption of traditional testing techniques
is that testers have complete knowledge of the software under test as well
as of its requirements and execution environment. This is not the case for
components off-the-shelf (COTS) that are produced independently and
then deployed in environments not known in advance. Producers may fail
in identifying all possible usage profiles of a component and therefore test-
ing of the component in isolation (performed by producers) is generally not
enough [23]. Limited to the performance concerns, our approach allows to
test off-the-shelf components in the context of a specific application that
is being developed. Thus, it can be used to complement the testing done
by COTS providers and thus assist in selecting among several off-the-shelf
components.

• Iterative development: Modern software processes prescribe iterative
and incremental development in order to control risks linked to architec-
tural choices (see e.g., the Unified Process [6]). Applications are incremen-
tally developed in a number of iterations. During an iteration, a subset
of the user requirements is fully implemented. This results in a working
slice of the application that can be presently evaluated and, in the next
iteration, extended to cover another part of the missing functionality. At
the beginning of each iteration, new architectural decisions are generally
made whose impact must be evaluated with respect to the current applica-
tion slice. For performance concerns, our approach can be used when the
life cycle architecture is established during the elaboration phase, because
it allows to test the expected performance of a new software architecture
based on the software that is initially available.

We are now continuing the experiments for augmenting the empirical evi-
dence of the viability of our approach and providing a wider coverage of the
possible alternatives of component-based distributed applications. We are also
working for engineering the approach, starting from the study of the research
problems outlined in this chapter.

Acknowledgments

This work has been partially funded through the EU IST project SEGRAVIS.

References

1. Balsamo S, Inverardi P, Mangano C (1998) An approach to performance evalu-
ation of software architectures. In: Proceedings of the First International Work-
shop on Software and Performance

2. Bernardi S, Donatelli S, Merseguer J (2002) From UML sequence diagrams
and statecharts to analysable Petri Nets models. In: Proceedings of the 3rd
International Workshop on Software and Performance(WOSP02)

Performance Testing of Distributed Component Architectures 23

3. Bertolino A, Marchetti E, Mirandola R. (2002) Real-time UML-based perfor-
mance engineering to aid manager’s decisions in multi-project planning. In:
Proceedings of the 3rd International Workshop on Software and Performance
(WOSP-02). ACM Press

4. Bodoff S et al. (2002) The J2EE Tutorial. Addison-Wesley
5. Booch G, Rumbaugh J, Jacobson I (1999) The Unified Modeling Language User

Guide. Addison-Wesley
6. Booch G, Rumbaugh J, Jacobson I (1999) The Unified Software Development

Process. Addison-Wesley
7. Cortellessa V, Mirandola R (2002) PRIMA-UML: a performance validation

incremental methodology on early UML diagrams. Science of Computer Pro-
gramming 44:101–129

8. Emmerich W (2000) Software engineering and middleware. In: Proceedings of
the 22th International Conference on Software Engineering (ICSE-00). ACM
Press

9. Emmerich W (2002) Distributed component technologies and their software
engineering implications. In: Proceedings of the 24th International Conference
on Software Engineering (ICSE-02). ACM Press

10. Skene J, Emmerich W (2003) Model driven performance analysis of enterprise
information systems. In: Proceedings of the International Workshop on Testing
and Analysis of Component-Based Systems(TACOS’03)

11. Gorton I, Liu A (2002) Software component quality assessment in practice:
successes and practical impediments. In: Proceedings of the 24th International
Conference on Software Engineering (ICSE-02). ACM Press

12. Kao W, Iyer R (1992) A user-oriented synthetic workload generator. In: Pro-
ceedings of the 12th International Conference on Distributed Computing Sys-
tems (ICDCS’92). IEEE Computer Society Press

13. Kruchten P (2000) The Rational Unified Process: An Introduction. Addison-
Wesley

14. Lin C, Avritzer A, Weyuker E, Sai-Lai L (2000) Issues in interoperability and
performance verification in a multi-orb telecommunications environment. In:
Proceedings of the International Conference on Dependable Systems and Net-
works (DSN 2000)

15. Liu Y, Gorton I, Liu A, Jiang N, Chen S (2002) Designing a test suite for
empirically-based middleware performance prediction. In: Proceedings of the
40th International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS Pacific’02)

16. Medvidovic N, Dashofy E, Taylor R (2003) On the role of middleware in
architecture-based software development. International Journal of Software En-
gineering and Knowledge Engineering 13(4)

17. Medvidovic N, Rosenblum D, Redmiles D, Robbins J (2002) Modeling software
architectures in the unified modeling language. ACM Transactions on Software
Engineering and Methodology 11(1):2–57

18. Mehta N, Medvidovic N, Phadke S (2000) Towards a taxonomy of software
connectors. In: Proceedings of the 22nd International Conference on Software
Engineering (ICSE-00). ACM Press

19. Merle P (2001) CORBA 3.0 new components chapters. Technical report, TC
Document ptc/2001-11-03, Object Management Group

20. Mills H D (1971) Top-Down Programming in Large Systems. In: Ruskin R ed,
Debugging Techniques in Large Systems. Prentice Hall

24 Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich

21. Petriu D, Shousha C, Jalnapurkar A (2000) Architecture-based performance
analysis applied to a telecommunication system. IEEE Transactions on Software
Engineering 26(11):1049–1065

22. Pooley R (1999) Using UML to derive stochastic process algebra models. In:
Proceedings of the 15th UK Performance Engineering Workshop (UKPEW)

23. Rosenblum D (1998) Challenges in exploiting architectural models for software
testing. In: Proceedings of the International Workshop on the Role of Software
Architecture in Testing and Analysis (ROSATEA). ACM Press

24. Shannon B (2002) Java 2 platform enterprise edition specification, 1.4 - pro-
posed final draft 2. Technical report, Sun Microsystems Inc.

25. Shaw M, Garlan D (1996) Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall

26. Skene J, Emmerich W (2003) A model-driven approach to non-functional anal-
ysis of software architectures. In: Proceedings of 18th IEEE International Con-
ference on Automated Software Engineering (ASE2003)

27. Sreenivasan K, Kleinman A (1974) On the construction of a representative
synthetic workload. Communications of the ACM 17(3):127–133

28. Subraya B, Subrahmanya S (2000) Object driven performance testing of Web
applications. In: Proceedings of the First Asia-Pacific Conference on Quality
Software (APAQS’00)

29. Weyuker E, Vokolos F (2000) Experience with performance testing of software
systems: issues, an approach, and case study. IEEE Transactions on Software
Engineering 26(12):1147–1156

