Specification, Analysis, and Prototyping of Mobile Systems

Cecilia Mascolo *
Department of Computer Science,
University of Bologna.
Mura Anteo Zamboni, 7 40127 Bologna, Italy.
phone:+39 051 354871
E-mail: {mascolo}@cs.unibo.it

ABSTRACT

Mobile code offers new strategies for the development
of systems. I adopt a formal approach to study advan-
tages, limitations, classification, and future trends of
mobile code technologies.

Keywords
mobile code, formalization, verification, and prototyp-
ing.

1 INTRODUCTION AND MOTIVATION
Mobile code is a recent and complex topic on which ap-
plication and theory oriented research is now focusing.
Java based technologies and mobile agents are having
a big influence in the development of new systems and
their diffusion is faster than the growth of formal tech-
niques able to deal with mobile code paradigms and
characteristics. However, some informal classification
[5], and some formal languages [1, 4, 8] have been used
in order to study capabilities and differences among mo-
bile code paradigms and systems.

The aim of my research is to formally reason about the
already developed systems and about the future trends
of mobile code using a large-grained approach in order
to study the architectural aspects of systems contain-
ing mobile components, and a fine-grained approach to
investigate the basic issues related with code mobility
and the primitives operations for mobility. In the next
two sections I will introduce my contribution and my
research agenda.

2 ACHIEVED RESULTS

We have dealt with the formalization and the enhance-
ment of a model (PoliS) based on hierarchically struc-
tured tuple spaces for the specification of different

*Part of this research is conducted while staying as a visit-
ing researcher in the Dept. of Computer Science at Washington
University in St. Louis, Missouri (USA).

paradigms of mobility [2]. The mobility of data, code
or agents carrying their state can be formalized using
PoliS. In order to be able to analyze the different mobil-
ity solutions applied to the specified systems, we have
devised a temporal logic (based on CTL, a branching
temporal logic often used for model checking) for PoliS
and we have built a model checker to obtain automatic
proofs of interesting safety and liveness properties: that
for example a mobile agent does not move forever under
certain conditions, or that it will eventually accomplish
its goal.

The coordination model (i.e. the tuple spaces model)
of PoliS supports flexible moving of components and
extensibility of the specification. Furthermore, the de-
coupling in space and time is a key issue of the language:
mobile components can communicate asynchronously
(but synchronization can be introduced) using tuples.
Like in distributed systems, different tuple spaces can
evolve concurrently in time. The separation of coor-
dination from computation issues makes the specifica-
tions more readable and allows mobility mechanisms to
be specified without worrying about computational de-
tails.

Using the PoliS model and the model checking tool we
are able to perform compositional analysis. In study-
ing complex systems, it may be convenient to first ana-
lyze components behavior, and then put together all the
pieces and perform some kind of global analysis [6]. The
study of components as isolated entities is useful when
dealing with wide architectures where components are
not elementary objects but they are composed of many
parts. Research on reconfigurable systems often has to
follow this kind of approach. This is, again, useful when
the systems contain mobile components: for instance, to
find out in which context a component is able to exploit
a particular behavior; or which components could end
up in the same environment and which kind of interac-
tion they could obtain.

The coordination model allows the study of the behav-
ior of single components, of their assumptions about
the environment, and of the possible component inter-
connections. The structure of the model checker allows



the verification of properties on isolated parts of the
system and the consequent verification of hypothetical
configurations composed of multiple components [3].

As in PoliS “spaces” (i.e. agents) mobility is not a ba-
sic operation (also if it can be formalized), we have en-
hanced the model providing space mobility as a first
class construct in the model [7].

In the next section, I illustrate my current work on
other aspects of mobility. In order to treat most of
the fundamental aspects of mobility in my thesis, I
am now carefully inspecting the basic mobility mech-
anisms exploited by the new technologies. A more
implementation-oriented language is used for this pur-
pose.

3 FUTURE RESEARCH

The part of my research illustrated in Section 2 can
be considered in general as “component-based study of
mobility”: the idea there is to reason on the interactions
and the coordination among components mobility, and
study the possible reconfiguration of the structure after
the movements.

That part of research is pursuing a large-grained ap-
proach. To achieve a complete understanding of the
future trends of mobile code technologies we are now
researching on the basic issues of mobility: what is the
basic unit of mobility? What are the primitive mobil-
ity operations? How should resources be handled in a
mobile code setting? We are therefore devising a new
model, more programming-oriented than PoliS, as we
need to reason at a more fine-grained level about mo-
bility of code.

The formal language we are using for this research is
Mobile UNITY [8]. Mobile UNITY has been already
used for the specification of physical and logical mobil-
ity based systems, and offers interesting features as a
notion of location and a components variables sharing
mechanism. It also has a well-founded proof-system and
our aim is to find interesting properties to be proven on
the different primitives and composition of primitives
we can specify.

Most of the devised technologies for mobility offer fixed
patterns of movement (agent mobility, or code mobility,
or only data mobility). Usually the different mobility
paradigms are encoded on the basic style embedded in
the system. Also the way to access the resources is usu-
ally pre-defined and the user needs to adhere to these
fixed paradigms. We are building a prototype based
on the basic primitives we have isolated and on the se-
mantics model we are building in order to offer a more
flexible way of designing applications, and to let the de-
signer choose the most appropriate level of mobility she
thinks it is the most appropriate. Furthermore, in order

to carefully evaluate our research, we will encode some
of the actual technologies and models using our lan-
guage and tool. Novel research ideas and ongoing tech-
nical developments will offer new mobility issues and
paradigms. We are therefore devising our language and
prototype to provide some scalability properties; as the
model is so basic we think that new features and mobil-
ity styles could be added in order to be able to formalize
and reason on forthcoming technologies.

ACKNOWLEDGMENTS

I would like to thank P. Ciancarini, and G.-C. Roman
for their helpful suggestions and guidelines on my work.
I am also grateful to G.P. Picco for the useful discussions
and comments.

REFERENCES

[1] L. Cardelli and A. Gordon. Mobile Ambients. In
M. Nivat, editor, Proc. of Foundations of Software Sci-
ence and Computation Structures (FoSSaCS), European
Joint Conferences on Theory and Practice of Software
(ETAPS’98), volume 1378 of Lecture Notes in Com-
puter Science, pages 140-155, Lisbon, Portugal, 1998.
Springer-Verlag, Berlin.

[2] P. Ciancarini, F. Franzé, and C. Mascolo. A Coordina-
tion Model to Specify Systems including Mobile Agents.
In Proc. 9th IEEE Int. Workshop on Software Specifica-
tion and Design (IWSSD), pages 96-105, Japan, 1998.

[3] P. Ciancarini and C. Mascolo. Specification and anal-
ysis of component based software architectures. Proc.
First IFIP Int. Working Conf. on Software Architecture.
Position paper., Feb. 1999.

[4] R. DeNicola, G. Ferrari, and R. Pugliese. KLAIM: A
Kernel Language for Agents Interaction and Mobility.
IEEE Transactions on Software Engineering, 24(5):315—
330, 1998.

[5] A. Fuggetta, G. Picco, and G. Vigna. Understanding
Code Mobility. IEEE Transactions on Software Engi-
neering, 24(5):342-361, 1998.

[6] P. Inverardi, A. Wolf, and D. Yankelevich. Checking
assumptions in components dynamics at the architec-
tural level. In D. Garlan and D. LeMetayer, editors,
Proc. 2nd Int. Conf. on Coordination Models and Lan-
guages, volume 1282 of Lecture Notes in Computer Sci-
ence, pages 46—63, Berlin, Germany, September 1997.
Springer-Verlag, Berlin.

[7] C. Mascolo. MobiS: a Specification Language for Mobile
Systems. In P. Ciancarini and A. Wolf, editors, Third
Int. Conf. on Coordination Languages and Models (CO-
ORDINATION), volume to appear of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, April 1999.

[8] G. Picco, G.-C. Roman, and P. McCann. Expressing
Code Mobility in Mobile Unity. In M. Jazayeri and
H. Schauer, editors, Proc. 6th European Software Eng.
Conf. (ESEC 97), volume 1301 of Lecture Notes in Com-
puter Science, pages 500-518. Springer-Verlag, Berlin,
1997.



