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Abstract. We present a method for analyzing the dynamics of a 7 doc-
ument describing a non-sequential system. First a formal operational
semantics based on the chemical metaphor is given to Z. Then, some
Unity-like temporal logic constructs are defined on such a formal op-
erational semantics in order to allow the specification and analysis of
dynamic and temporal properties of concurrent systems, such as safety
and liveness properties.

1 Introduction

The introduction of formal methods increased the usefulness of software specifi-
cation documents by allowing to automatically check them and to formally rea-
son on them. The Z notation [18] is currently widely used as a non executable
specification language to formally describe and analyze the requirements and
the architectures of software systems. However, Z has been mostly used for the
specification of sequential systems. In fact, even if in the recent years it has been
used for specifying concurrent, reactive, or even distributed systems, in general
non-sequential systems are difficult to be perfectly described and then analyzed
using Z.

Even if 7 1s not executable several researchers have tried to improve the
ability of Z to express and support the analysis of dynamic features of non-
sequential systems. The integration of Z with operational notations like CSP [1]
or Petri Nets [10, 12], or the use of temporal logic for analyzing Z documents [16,
5, 9, 14] are some of the approaches suggested. These approaches all suffer from
the same problem: the integration of different notations in a uniform specification
method is not formalized because a clear and consistent integration is in general
difficult to accomplish.

The approach we introduce here is new, insofar as we formally define in a
unified framework both an operational semantics and a logic based on such a
semantics to reason on 7Z documents. The operational semantics we introduce
is based on the chemical metaphor embedded in the notation of the Chemical
Abstract Machine (Cham) [2], The logic includes a number of constructs which
allow the definition of dynamic properties of a system specification. We have cho-
sen some Unity-like [6] logic constructs because of their expressiveness (a similar
approach can be found in [9]) and because it has already been proved suitable
to be the proof system basis for Swarm language [8]: a multiset transformation
based language like the Cham.



The semantics of the constructs is defined on an ezecution model based on
the operational semantics.

This paper has the following structure: in Sect. 2 a specification style and an
interpretation of Z documents as sets of state and operation schemas are given;
Sect. 3 describes the operational semantics based on the chemical metaphor we
adopted. Sect. 4 contains the definition of the execution model imposed on the
operational semantics; Sect. b introduces the new logic constructs inherited from
the Unity language while the final section contains comparisons and conclusions.

2 A specification style and its semantics

For conciseness, our specification style considers a restricted version of 7; we
specify such a fragment using 7 itself, thus following the Z tradition [17, 11].

The elementary components of a Z specification are State schemas and Op-
eration schemas. A schema is defined as follows:

— SCHEMA_STATE
name : NAME
schema_imp : P NAME
decl : P VAR
imported : P VAR

name & schema_imp
Vd: VAR | d € imporied @ s : NAME | s € schema_imp
d € stateschema(s).decl

where [NAME] is a basic type specifying names of variables or schemas, name
identifies the schema, schema_imp is a set of imported schemas names ', decl is
a set of identifier declarations, imported is the set of imported identifiers; the
predicate states that every imported identifier should be declared in one of the
imported schemas.

Intuitively, we only consider State schemas without predicative part since we
will be able to express these predicates as invariant properties using the logic
defined in Sect.5.

Semantically, a State schema s can be seen as the set of all its possible
instantiations [17]. A schema instance is an instantiated State schema:

_ SCHEMA_INSTANCE
sch : NAME
values : VAR »—» IDENT

Vv: VAR e (v € sch.decl V v € sch.imported) < v € dom values

where VAR has a name and a type and IDENT is a bound variable. The
predicate in SCHEMA_INSTANCE ensures that every variable is mapped on an
identifier with same name and type.

! We only consider two levels of imported schemas.



An Operation schema is:

_ SCHEMA_OP
name : NAME_OP
delta : NAME
environment : ENV
mputs : PIDENT
precondition : P PRE
postcondition : P POST

ds: SCHEMA_STATE | s.name = delta e
Vid : IDENT | id € environment.decl ®
Jv: VAR | v.name_id = id.name_id A
v.type_id = id.type_id @ v € s.decl

where name is the operation name, delta is the name of the State schema
on which the operation acts, environment is the environment of the variables
declaration, tnputs are the inputs of the schema, precondition is the precondition
predicates set and postcondition is the postcondition predicates set.

The initialization operations are represented by particular operation schemas
without preconditions.

3 Operational semantics

The standard 7 semantics [17, 4] does not offer formalization for concurrency.
Thus, we have defined a new operational semantics based on the concurrency
offered by the chemical model.

3.1 The chemical metaphor

In the Chemical Abstract Machine model [2, 3] Molecules, Solutions, and Rules
are the fundamental elements. A Chemical Abstract Machine is a triple (G, C, R)
where G is a grammar, C is a set of configurations (the language generated by the
grammar) or molecules, and R is a set of the rules condition(C) x bag C' xbag C'.
A solution is a multiset of molecules: bag C; { [} symbols usually delimit a
solution. Solutions are considered the Abstract Machine states. They can be
composed of other subsolutions using W: S = S} W Ss.

There are some general laws valid for any Cham:

— Reaction Law: an instance of the right-hand side of a rule can replace the
corresponding instance of its left-hand side 1if conditions on the molecules
hold. Given a rule
condition(my, ma..mp) — My, Ma..my = M}, mh..m]
if My, Ma.. My, M{, M;..M] are instances of the m;’s and the m/’s by a com-
mon substitution, then
condition( My, Ma..My) — {| My, Ma..My, [} = {| M{, M4..M] [}



— Chemical Law: reactions can freely happen in a solution

S =Sl
SWS2= S1S2

— Membrane Law: a subsolution evolves freely in every context

S =51
15T =4 Ol

where C] ] indicates a context.

In a Cham two instances of rules can fire concurrently if they do not need the
same molecules to react on; so many instances of rules can progress simulta-
neously on a solution. If two instances of rules conflict, in the sense that they
“consume” the same molecules, the choice of which to let react is non determin-
istic.

We consider a fair Cham where repeatedly enabled rules will eventually be
fired: in this way it is possible to prove properties defined using Unity logic
constructs (Sect. 5).

3.2 An Operational Semantics for Z

We introduce an interpretation of 7 specifications which allows us to deal with
concurrent dynamics. Intuitively, an instance of a State schema (inst) is asso-
ciated with a solution where, in some way, each variable is a subsolution (in
many cases a single molecule). Tnstead, an operation schema corresponds to a
chemical rule where pretuples and posttuples are solutions composed of pre and
post conditions of the operation.

A molecule 1s represented as a tuple including a name, a type, and a value;
a solution is a bag of molecules; a rule is composed of a conditional part which
defines the applicability of the rule, and two solutions, to indicate molecules to
be deleted and added, respectively, to the state solution:

MOLECULE == NAMFE x TYPE x VALUE

SOLUTION == bag MOLECULE

RULE == CONDITION x SOLUTION x SOLUTION

We call the first SOLUTION “pretuples” and the second “posttuples” to
avoid ambiguities. A rule is applicable to a solution if the solution contains
molecules that satisfy the conditional parts (CONDITION) of the rule and
molecules that match the pretuples of the rule.

The semantic function F'Sem associates a solution to a schema_instance:

Fsem : SCHEMA_INSTANCE — SOLUTION

FEvery identifier in the schema instance is associated with a subsolution (not
necessarily a single molecule). We remark that 7 sets and bags are decomposed
by this function in several molecules to increase potential concurrency.

Fsem_op associates a rule to an operation schema 2:

2 A similar function can be defined for the initialization operation, where no precon-
ditions are present [3].



Fsem_op : SCHEMA_OP — RULE

Fsem_op associates to pre and postcondition different part of the rule:

— Every 7 schema postcondition that specifies the removal of an element from
a set or bag is mapped on a pretuple of the rule (molecule to be deleted).

— Every postcondition that specifies the insertion of an element in a set or bag
is mapped on a posttuple of the rule (molecules to be added).

— FEvery Z precondition that defines a membership (€, in) is mapped on a pre-
tuple (a removal) and also on a posttuple (reinsertion) if the Z postcondition
does not contain an indication of removal of that element: in other words, a
check of membership is evaluated as a removal followed by a reinsertion.

— Postconditions containing mathematical operators (+, —,..) on naturals are
encoded deleting one molecule and adding the updated molecule.

FExample: ' = z 4+ 1 is evaluated as (z,N, v) in pretuples and (z,N, v + 1)
in posttuples of the rule.

— Preconditions containing relational operators (<,>) are encoded as condi-
tions, but the molecule corresponding to the variable is deleted and readded
as already described 3.

Example: z < 5is seen as v < 5 — (z,N, v) = (z,N, v)

Now, thanks to the chemical laws, rules can fire concurrently when they are
enabled by conditions and non conflicting on pretuples molecules.
3.3 A simple example

Consider the classic dining philosophers problem. What follows is its formaliza-
tion in our style.

FORK ::= forkl | fork2 | fork3 | fork4 | forkb
PHILO ::= philol | philo2 | philo3 | philo4 | philob

The following schema illustrates the basic State schema of the system:

System
think : P PHILO

eat : P PHILO

have_right : P PHILO

avatlable : P FORK

left, right : P(PHILO x FORK)

where: eat denotes the set of eating philosophers; have_right is the set of
philosophers who got the right fork, and wait for the left one; think is the set
of thinking philosophers; available is the set of available forks; left and right
indicate for every philosopher respectively the left and right fork.

® This is done according to the chemical semantics where conditions can only be stated
on the local molecules involved in the rule [3].



__Init_system
System’

eat’ = &

have_right’ = &

think’ = {philo1, philo2, philo3, philo4, philo5}

available’ = {fork1, fork2, fork3, fork4, fork5}

right’ = {(philo1, forkl), (philo2, fork2), (philo3, fork3),
(philod, fork4), (philob, fork5)}

left' = {(philol, forkb), (philo2, fork1), (philo3, fork2),
(philod, fork3), (philob, fork4)}

Initially, all philosophers are thinking and all forks are available.
We now define the operations for philosophers:

— Right_Request
ASystem
ph? : PHILO
f?: FORK

ph? € think

f7 € available

(ph?, f7) € right

have_right’ = have_right U {ph?}
available’ = available \ {f7}
think’ = think \ {ph?}

The schema RightRequest defines the operation of taking the right fork.
Operation Lefi_Request is similar: we do no specify it formally.

When ph? has the right fork he can ask for the left one: if the fork is available
it is assigned to him.

__ Thinking
ASystem
ph? : PHILO
o, ff?: FORK

ph? € eat

(ph?, f7) € right

(ph, f17) € left

think’ = think U {ph?}

eat’ = eat \ {ph?}

available’ = available U {f7?, [f7}

If ph? quits eating he puts down both forks and begins thinking again.



The initialization operation (Ini{_System) is mapped on a chemical rule hav-
ing no conditions and no pretuples and as posttuples the following solution:

(think,P PHILO, philol), .., (think, P PHILO, philo5),
(available,P FORK, forkl), .., (available, P FORK, fork5),
(right,P(PHILO x FORK), (philol, forkl)), ..,
(right,P(PHILO x FORK), (philob, forkb)),
(left,P(PHILO x FORK), (philol, forkb)), ..,

(left, P(PHILO x FORK), (philob, fork4))

The State schema instance obtained after the application of the operation
is the same solution presented above. The rule associated with the operation
schema RightRequest has the following pretuples:

(think,P PHILO, ph?), (available,P FORK, f?),
(right, P(PHILO x FORK), (ph?, 7)),

and posttuples:
(have_right,P PHILO, ph?), (right,P(PHILO x FORK), (ph?,f7))

The rule corresponding to the operation LeftRequest is similar.
The operation Thinking corresponds to the following rule with pretuples:

(eat,P PHILO, ph?), (right, P(PHILOF x ORK), (ph?,f7)),
(left, P(PHILO x FORK), (ph?,[f7))

and posttuples:

(available,P FORK, f?), (available,P FORK, {f7),
(think,P PHILO, ph?), (right, P(PHILO x FORK), (ph?, 7)),
(left, P(PHILO x FORK), (ph?,[f7))

Because of the concurrent interpretation of Z that we are going to give, we
make the following assumption: all variables not explicitly mentioned in the
postconditions of an operation schema may change (i.e. they have not to be
invariant: other operations can concurrently modify them).

This assumption is needed in our interpretation and allows concurrency of the
operations. In some papers the assumption introduced is exactly the contrary:
“Variables not mentioned in the schemas are considered unchanged” e.g. [16]
but this is not standard Z too.

4 The execution model

We make the operational semantics (defined in Sect.3) explicit, to build an eze-
cution model, namely a way of abstractly executing a Z specification document
written according to the style outlined in Sect.2. The execution model is defined
on the semantics just described and it represents the unfolding of the application
of the semantics rules. From every State schema s a tree (execution model) can
be constructed in the following way:



— the root node is void,

— the first operation applied is the initialization operation without any pre-
conditions;

— from every node several different applicable operation sets can exist, (cho-
sen among all the enabled operations on that node), thus introducing non
determinism in the choice of the operations being in conflict.

— Each branch corresponds to the application of a group of enabled operations
which could be applied without conflicts, as dictated by the Cham model.

In order to allow the specification of the Unity logic constructs using 7 as meta-
language, we introduce a concept of ezecution tree:

TREFE ::= Void_tree
| fork{ PAIR x seq TREE))

where
PAIR == SCHEMA_INSTANCE x seqP SCHEMA_OP

The function Fzec maps every State schema on an execution tree with par-
ticular properties (we omit the Z specification of the function); the chemical
interpretation imposes that for every node label (s, seq), where s is an instance
and seq is a sequence of operations sets:

— all the operations in the sets belonging to the sequence seq must be enabled
on s;

— all the operations in the sets belonging to the sequence seq must act on the
State schema of which s is an instance;

— each set, member of the sequence seq, must contain operations that can
concur (that is without conflicts);

— for every ¢, label of one of the children of the node labeled (s, seq), there
must hold the postconditions of all the operations in the operations set
applied to reach that node (sequence structure help to keep link between
nodes and operations set).

5 The logic

Liveness (namely “a good thing will eventually occur”) or safety (namely “a bad
thing never happens”) properties can be expressed. Properties are predicates (as
the ones in the operation schemas) built using some logic operators (A, V, = |
&, =) and Unity constructs. Properties have a chemical interpretation as well,
so that we can analyze the truth of them on the execution model, based on the
chemical metaphor too. In order to be able to reason on dynamic properties, we
borrow a few constructs from the Unity logic:

— p unless ¢ says that whenever p 1s true during the execution, surely either
¢ will become true or p continues to hold. In particular, on the tree: if p is
true on some nodes then on their children ¢ 1s true or p still holds.



— Stable is an alias for p unless false, that is when p becomes true it will
hold forever. On the tree: if p is true on a node it will remain true for all the
subtree of that node.

— Invariant p says that p is true forever. That is, for every node of the exe-
cution tree p is valid.

— The meaning of p ensures ¢ is that when p becomes true then eventually
¢ will hold and before that moment p is still valid. That is, if p is true on a
node N, then each branch through N there is a node M below N where ¢
holds and on nodes between nodes N and M in the path, p holds.

— p leads_to ¢ has quite the same meaning as ensures except that it does
not ensure that p is valid until ¢ becomes true. On the tree: if p is true on
a node ¢ will eventually hold on a node in all its sub-branches.

The following axiomatic schema shows how we formalize the meaning of the logic
constructs on the execution model. We report only the ensures definitions:

ensures : PROPERTY x PROPERTY — B

Vp,q: PROPERTY e ensures(p, q) = true &
((unless(p, q) = true) A
(Ve: TREE; el :seq TREE,
schema : SCHEMA_STATE; set :seqP SCHEMA_OP;
inst : SCHEMA_INSTANCE |
subtree( Frec(schema), e) = true A fork(inst, set,el) = e
A valid(inst, and(p, not(q)) = true o
(Fe3 :seq TREE; set’ : seqP SCHEMA_OP;
inst’ : SCHEMA_INSTANCE; €2 : TREE |
subtree(e2, ) A fork(inst', set’, e3) = €2
e valid(inst’, q)) = true))

where function wvalid indicates when a property holds on an instance state.
Intuitively this is done considering every property as a solution and analyzing
the matching with the state solution like what has been done for rules.

This formalization of ensures derives from wunless; in fact, p ensures ¢ if
p unless ¢ and there exists a branch of the tree that from a state where p is
valid (and not ¢) leads to a state where ¢ holds.

FEzample We state some properties about the dining philosophers system:

— Theorem 1 philol € think ensures philol € have_right
— Theorem 2 stable (philol € have_right A philo2 € have_right A
philo3 € have_right A philod € have_right A philo5 € have_right)

The first property states that if philol is thinking, he will eventually get the
right fork; this property can be stated for all other philosophers as well. The
second property defines a deadlock: when every philosopher has got the right
fork then the system cannot proceed.



Proof of Theorem 1: If p ensures ¢ (where p is philol € think and ¢ is
philol € have_right) must be valid, first p unless ¢ has to hold (see ensures
formalization). This means that for every enabled operations set on the solution
containing the molecule (think, P PHIL O, philo1), the application leads to a state
where either molecule (have_right,P PHILO, philol) is present or the previous
molecule is still in the solution (this is the unless formalization of our execution
model).

Considering our 7 specification, we notice that for all the enabled operations
sets that we could choose, each of them modifies the instance solution leaving
the molecule (in case we choose only operations acting on other philosophers)
or (have_right,P PHILO, philol) is inserted (in case the operations set contains
RightRequest that is the only operation enabled for philol on the state solution
considered). Hence, p unless ¢ holds.

To prove p ensures ¢ is now necessary (following the ensures formalization)
to ensure that, given a state where p A = ¢ holds exists an enabled operations set
applicable, that leads to a state on which ¢ holds. In our specification we have
to prove that on a state where p holds exists an enabled (also not continuously)
operation set that leads to ¢. This set contains the instance of the operation
RightRequest on philol and other operations acting on other philosophers. Then
remembering that our Cham is fair (Sect. 3.1) we can state that the set will
eventually be applied. This completes the proof.

6 Comparisons and conclusions

We have defined a chemical semantics for a fragment of Z, and showed that
it offers a good basis for the formalization of logic constructs which allow the
expression and the analysis of concurrent properties.

We are studying the possibility to map Z schema inclusion using membranes
of Cham and airlock. Some other dynamic aspects could be treated such as
execution order, synchronization and communication; we are also studying the
possibility to introduce real time in our model.

Formalizing dynamics of concurrent and distributed systems is one of the
topical challenges to formal languages. Z has been used in this sense several times;
the simplest solution consists of considering an intuitively concurrent semantics
for schemas: operations are considered atomic and non determinism guides the
choice of the operation to apply. Such a model produces a specification whose
analysis can hardly expose concurrent properties. In [13] a specification of the
distributed TBM Customer Information Control System (CICS) is presented:
although no formalization of 7Z dynamics can be found in the paper, this is
considered one of the most successful applications of Z in this sense, because of
the reduction of production costs that the 7 specification involved. The paper
[15] contains the formal specification of a reactive dialog system: Z schemas are
used in order to state invariant properties and a formal interpretation of the
behavior of the system is given. However, the approach described in the paper
is weak in term of formalization of concurrency and semantics.



More formal approaches integrate Z with other notations; for instance, Ben-
jamin [1] integrates Z schemas with CSP notation. CSP is used to specify an
abstract system while 7Z defines more detailed aspects of the design. The in-
tegration is minimal and not formally specified. In [12] Petri Nets are used to
formalize control flows, causal relations, and dynamic behavior of systems stat-
ically defined using Z; nevertheless the formalization of the interaction between
the two notations is also minimal. [10] studies a more formal model of integration
of Z with Petri Nets: Petri Nets are mapped on Z specifications so that graphical
representation given by Petri Nets can be used to animate Z documents, yet we
think a visualization cannot replace formal semantics.

In [16] a formalism based on temporal logic is used to integrate 7 schemas.
The use of temporal logic has offered good starting points to the study of the
dynamics of Z specifications however integration 1s not supported by semantics.
Something more formal has been done for Object-Z [5]: a sequential execution
model 1s introduced, defining a notion of abstract trace as a sequence of pairs
(states and operations), and using some temporal logic operators (&, O, O) to
reason on such a model. TLA has been proposed to be integrated with Z as well,
however in this case 7 is only used to define actions specification [14]. Tn [9] a
Unity like logic is used to formalize properties on the behavior of systems; an
interleaving model with atomic operation interpretation is given but not formal-
ized. The simplicity of Unity logic constructs fit quite well with the purpose of
effectively specifying systems dynamics.

We remark that the use of Unity logic on a model based on multiset trans-
formation is not new, in fact it has been applied to the Swarm language in order
to provide a proof system to a parallel language [8]. The Swarm experience,
in which the idea consists of mapping Unity-like constructs on a coordination
language similar to Linda, inspired us to make some experiments in concurrent
animation of Z. In fact, our semantic model based on multiset transformation
offers a good basis for the parallel animator of specifications described in [7]. The
animator can compile the 7Z language into programs written in a coordination
language so as to allow a truly concurrent animation.
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