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Resonant Activation in a Nonadiabatically Driven Optical Lattice
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We demonstrate the phenomenon of resonant activation in a nonadiabatically driven dissipative optical
lattice with broken time symmetry. The resonant activation results in a resonance as a function of the
driving frequency in the current of atoms through the periodic potential. We demonstrate that the
resonance is produced by the interplay between deterministic driving and fluctuations, and we also
show that by changing the frequency of the driving it is possible to control the direction of the diffusion.
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The problem of the escape of a Brownian particle out
of a potential well, first characterized by Kramers [1],
plays a central role in the description of many processes
in physics, chemistry, and biology [2,3]. Kramers’ law
predicts an escape rate of the form exp��U=kT�, where
U is the depth of the well, T the temperature, and k the
Boltzmann constant. In the case of a nonadiabatically
driven Brownian particle, the aforementioned scenario
may change significantly, and much work has been devoted
to the study of this nonequilibrium phenomenon [4–11].
It has been shown that in the presence of nonadiabatic
driving the lifetime of the particle in the potential well
can be significantly reduced, a phenomenon named reso-
nant activation.

Resonant activation was first observed in a current-
biased Josephson tunnel junction [4], and more recently
for a Brownian particle optically trapped in a double well
potential [10]. Resonant activation has also been theoreti-
cally studied for Brownian particles in periodic potentials,
a configuration relevant for the realization of Brownian
motors [12]. Also in this case the nonadiabatic driving may
result in a significant enhancement of the activation rate.
Furthermore, it has been predicted that, whenever the
spatiotemporal symmetry of the system is broken, the
resonant activation gives rise to resonant rectification of
fluctuations [6,8,13]. Indeed, very recently Brownian mo-
tors have been realized with nonadiabatically driven
Brownian particles [14,15]. However, in those works the
resonant nature of the rectification mechanism and the
underlying resonant activation process have not been in-
vestigated. In particular, the possibility of controlling the
amplitude and the direction of the diffusion by changing
the frequency of the driving field, as predicted by theoreti-
cal work [6,8,11], has not yet been demonstrated.

In this Letter we demonstrate experimentally the phe-
nomenon of resonant activation in a Brownian motor by
using cold atoms in a driven dissipative optical lattice as a
model system. Indeed, we observe the appearance of a
resonance while monitoring the current of atoms through
the lattice as a function of the driving frequency. We show
that this resonance is due to the interplay between fluctua-
tions and deterministic driving, and we demonstrate that by
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varying the driving frequency it is possible to reverse the
current direction.

In our experiment we use cold atoms in a dissipative
optical lattice [16], in which the atom-light interaction
determines both the periodic potential for the atoms and
the dissipation mechanism which leads to a friction
force—the so-called Sisyphus cooling—and to fluctua-
tions in the atomic dynamics. This system offers the sig-
nificant advantage of being easily tunable over a wide
range of parameters: the potential depth, the fluctuation’s
level, and the parameters (frequency and amplitude) of the
driving force can be varied and carefully controlled over a
large interval of values. This is an essential feature for the
investigation presented here.

Before presenting the experimental results, we analyze
our system through numerical simulations. For the sake of
clarity, our theoretical analysis is limited to the simplest
one-dimensional configuration in which Sisyphus cooling
takes place: a Jg � 1=2 ! Je � 3=2 atomic transition and
two counterpropagating laser fields with orthogonal linear
polarizations—the so-called lin ? lin configuration. The
light interference pattern results in two optical potentials
U� for the atoms, one for each ground state j�i, in phase
opposition: U� � U0
�2� cos2kz�=2, where z is the
atomic position along the axis Oz of light propagation,
k the laser field wave vector, and U0 the depth of the opti-
cal potential. The stochastic process of optical pumping
transfers the atom from one ground state to the other
one, changing in this way the optical potential experienced
by the atom. This stochastic process results in a friction
force and produces fluctuations in the atomic dynamics
[16]. The departure rates 
�!��z� from the j�i states can
be written in terms of the photon scattering rate �0 as

�!� � �0�1� cos2kz�=9 [16]. It appears therefore that
the amplitude of the fluctuations can be quantitatively
characterized by the photon scattering rate �0, which is
an experimentally accessible parameter.

To study the phenomenon of resonant activation, we
need to drive the atoms with a zero-mean oscillating force.
We consider here an ac force consisting of two harmonics,
A1 cos�!t� and A2 cos�2!t� �=2�, so that the resonant
activation should lead, following the breaking of the time
1-1  2005 The American Physical Society
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FIG. 1. Results of Monte Carlo simulations for a sample of
n � 104 atoms in a 1D lin ? lin optical lattice. The mean atomic
velocity v, rescaled by the atomic recoil velocity vr � �hk=m, is
shown as a function of the driving frequency !, for different
amplitudes of the ac force. The driving frequency ! is expressed
in terms of the vibrational frequency !v of the atoms at the
bottom of the potential wells. Parameters of the calculation are
�0 � 10!r and U0 � 100Er, with Er and !r the recoil energy
and frequency, respectively. The amplitude of the two harmonics
of the force are A1 � 1 and A2 � 4.

PRL 94, 143001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
15 APRIL 2005
symmetry of the system, to a resonant generation of a
current, as predicted by theoretical work [6,8,17]. In the
numerical work it is obviously possible to ‘‘apply’’ directly
an homogeneous ac force to the atoms, by simply including
the appropriate terms in the equation of motion. On the
contrary, in the experiment this is not possible, and forces
can be applied only by phase modulating the lattice beams.
For consistency, we follow the same approach in the theo-
retical analysis, and we consider a phase modulation ��t�
of one of the lattice beams of the form

��t� � �0
A1 cos�!t� � 1
4A2 cos�2!t� �=2��: (1)

In this way in the accelerated frame in which the optical
potential is stationary the atoms experience an inertial
force

F�t� �
m!2�0

2k

A1 cos�!t� � A2 cos�2!t� �=2��; (2)

where m is the atomic mass and k the laser field wave
vector.

To study the atomic dynamics in the presence of the
nonadiabatic driving, we follow the same procedure devel-
oped to investigate laser cooling processes in (undriven)
optical lattices. The Fokker-Plank–type equation for the
undriven system and the Monte Carlo technique to derive
the atomic trajectories have been discussed in detail in
Refs. [16]. The generalization of that method for the driven
system of interest here is straightforward, and consists of
the inclusion of a time-dependent shift ��t� [see Eq. (1)] in
the relative phase between the two laser fields generating
the optical lattice.

Through Monte Carlo simulations, we calculated the
mean atomic velocity v as a function of the frequency !
of the driving, for different amplitudes of the ac force. The
results of our calculations are shown in Fig. 1. For each
data set, in order to keep constant the amplitude F0 �
m!2�0=2k of the ac force [see Eq. (2)] we varied the
amplitude �0 of the phase modulation according to �0 �
��=!2, with �� constant for a given F0. This is the same
procedure used in the experiment.

Figure 1 shows clearly the appearance of a resonance in
the current amplitude as a function of the driving fre-
quency. Indeed, for weak driving the current is negligible.
At a larger amplitude of the driving, the current differs
significantly from zero and shows a well defined reso-
nance. The resonance is observed in the regime of non-
adiabatic driving, i.e., for driving frequencies of the order
of or exceeding the vibrational frequency. The numerical
simulations also show that by changing the driving fre-
quency it is possible to reverse the current direction, as
predicted by the general theory [6,8,11]. We note that we
carried out numerical simulations for two different ratios of
the force harmonics’ amplitude: A1=A2 � 1=4 (Fig. 1) and
A1=A2 � 1 (not shown). The two sets of calculations evi-
denced the same qualitative behavior.

To determine the nature of the resonance, we focus our
attention on the range of frequencies of the ac fields
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corresponding to nonadiabatic driving. This regime is il-
lustrated in Fig. 2, where the resonance in the atomic
current as a function of the driving frequency is shown
for a given amplitude of the ac field and at different values
of the scattering rate. From Fig. 2 it appears that the
amplitude of the resonance shows a nonmonotonic depen-
dence on the scattering rate �0: at small �0 the resonance
amplitude increases with �0, then reaches a maximum and
finally at larger values of �0 decreases. The constructive
role played by the noise at low levels of �0 shows that the
resonance observed in the numerical simulations is deter-
mined by the interplay between the applied ac forces and
the random fluctuations, which results in the rectification
of the latter ones. This is at variance with the behavior
observed at frequencies somewhat below !v where the
magnitude of the (negative) current is decreased by an
increase of the scattering rate, a behavior characteristic
of deterministic rectification of forces. The conclusion of
our numerical analysis is therefore that the resonant acti-
vation phenomenon should be observable in a dissipative
optical lattice, and should result in a resonance in the
atomic current as a function of the driving frequency.

The experiment is a direct implementation of what is
described in the theoretical analysis. Instead of using a 1D
optical lattice, as in the numerical work, we use a 3D
lattice, which offers the significant advantage of confining
the atoms in the three directions. This reduces the losses of
atoms from the lattice during the experiment.
1-2
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FIG. 3. Experimental results for the average atomic velocity as
a function of the driving frequency, for different amplitudes of
the driving force. The optical potential is the same for all
measurements and corresponds to a vibrational frequency !v �
2�� 214 kHz. The driving frequency satisfying the condition
2! � !v is indicated by an arrow. The detuning � of the lattice
from atomic resonance is � � 11:1�, where � is the excited
state linewidth. The values for the velocity are expressed in terms
of the recoil velocity vr, equal to 3:52 mm=s for the Cs D2 line.
The two harmonics of the force have equal amplitude: A1 �
A2 � 1. The lines are guides for the eye.
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FIG. 2. Results of Monte Carlo simulations for a sample of
n � 104 atoms in a 1D lin ? lin optical lattice. The mean atomic
velocity v is shown as a function of the driving frequency ! for
different values of the scattering rate �0. In the inset, the mean
atomic velocity vpeak at the maximum of the resonance is re-
ported as a function of the scattering rate. The depth of the opti-
cal potential is U0 � 100Er; the ac force amplitude corresponds
to �� � 100�!2

r . The amplitudes of the two harmonics of the
force are A1 � 1 and A2 � 4. The lines are guides for the eye.
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The experimental setup is the same as the one used in
Ref. [15], and consists of four linearly polarized laser
beams arranged in the so-called umbrellalike configuration
[18]. One laser beam propagates in the z direction. This is
the beam that is phase modulated. The three other laser
beams propagate in the opposite direction, and are ar-
ranged along the edges of a triangular pyramid having
the z direction as the axis, with the azimuthal angle be-
tween each pair of beams equal to 2�=3. For this lattice
beam configuration, the interference of the laser fields
produces a periodic and spatially symmetric optical poten-
tial, with the potential minima associated with pure circu-
lar (�� or ��) polarization of the light [18]. For an atom
with a Fg � F ! Fe � F� 1 transition, the optical po-
tential consists precisely of 2F� 1 potentials, one for each
ground state sublevel of the atom.

Cesium atoms are cooled and trapped in a magneto-
optical trap (MOT). At a given instant the MOT is turned
off and the four lattice beams are turned on. The atoms are
left in this undriven optical lattice for 2 ms. This is suffi-
cient for the atoms to thermalize and reach equilibrium.
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Then the phase modulation ��t� [see Eq. (1)] is slowly
turned on. The dynamics of the atoms is studied with a
charged-coupled device camera. After a short transient, the
center of mass of the atomic cloud is observed to be set into
uniform motion along the z axis, and a center-of-mass
velocity v is correspondingly derived.

Results for the average atomic velocity as a function of
the driving frequency are shown in Fig. 3 for different
values of the amplitude of the driving. We clearly observe
the buildup of a resonance when the amplitude of the
driving is progressively increased. The resonance appears
in the regime of nonadiabatic driving (2! * !v), and a
current reversal is observed on the low-frequency side of
the resonance, in agreement with our simulations and with
the general theory [6,8,11].

We examine now the dependence of the resonance on
the scattering rate, i.e., the fluctuations’ amplitude, with
the aim to demonstrate that the observed resonance is,
indeed, produced by the interplay of deterministic driving
and fluctuations. Figure 4 shows our results for the aver-
age atomic velocity as a function of the driving frequency,
at different values of the scattering rate. It clearly appears
that the resonance amplitude shows a nonmonotonic de-
pendence on the scattering rate: the resonance initially
increases at increasing values of �0, then reaches a maxi-
mum and starts decreasing at large values of the scattering
1-3
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FIG. 4. Experimental results for the average atomic velocity as
a function of the driving frequency, at different scattering rates.
In the inset the resonance amplitude, i.e., the peak mean atomic
velocity, is reported as a function of the scattering rate. The
optical potential and the driving force amplitude are the same for
all data sets, and they are characterized by !v � 2�� 214 kHz
and �� � 13:3 �MHz�2. The driving frequency satisfying the
condition 2! � !v is indicated by an arrow. Different data
sets correspond to different detunings �, i.e., to different scat-
tering rates as the optical potential is kept constant. The data are
labeled by the quantity �s � 
!v=�2���2=� which is propor-
tional to the optical scattering rate. The two harmonics of the
force have equal amplitudes: A1 � A2 � 1. The lines are guides
for the eye.
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rate. This is in agreement with our numerical results and
clearly demonstrates that the resonance is determined by
the interplay between deterministic driving and fluctua-
tions and, due to the broken time symmetry, results in the
rectification of the latter ones.

In conclusion, in this work we demonstrated the phe-
nomenon of resonant activation in a nonadiabatically
driven dissipative optical lattice with broken time symme-
try. Because of the broken symmetry of the system, the
resonant activation results in a resonance in the current of
atoms through the periodic potential. We demonstrated that
the resonance is produced by the interplay between deter-
ministic driving and fluctuations, and we also showed that
by changing the frequency of the driving it is possible to
control the direction of the diffusion, as predicted by
theoretical models. We notice that the rectification of
fluctuations with nonadiabatically driven Brownian par-
ticles was already observed in previous work [14,15], but
the resonant nature of the rectification mechanism was not
demonstrated. Our work therefore also establishes experi-
mentally the connection between resonant activation and
14300
resonant rectification of fluctuations, and confirms the
theoretical predictions. The present experimental realiza-
tion, in which both deterministic and fluctuating forces
originate from light fields, also shows the generality of
the phenomenon of resonant activation, which is not re-
stricted to systems in which the fluctuations are of thermal
origin, as is usually considered in theoretical work.
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