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Abstract

The average percent change (APC) is often used to measure temporal
trends. Under the assumption of linearity on the logarithmic scale, the APC
is estimated by using a generalized linear model. A serious limitation of
least-squares type estimators is their sensitivity to outliers. The goal of this
study is two-fold: firstly, we propose a robust and easy-to-compute mea-
sure of the temporal trend based on the median of the rates (median percent
change - MPC), rather than their mean; secondly, we investigate the perfor-
mance of several models for estimating the rate of change when some of the
most common model assumptions are violated. We provide some general
guidance on the practices of the estimation of temporal trends when using
different models under different circumstances. Also, we analyzed an En-
glish cancer registration dataset to illustrate the proposed method. The MPC
provides a robust alternative to APC. We believe that, as a good practice,
both APC and MPC should be presented when sensitivity issues arise. The
modelling of data subsets, in any case, should reflect the peculiarity of the
process from where the dataset has originated.

1 Introduction
In epidemiological studies, trends in incidence and mortality are of special
interest. Rates are usually calculated for a pre-specified number of time
intervals within the study period and then plotted in order to visually assess
their behavior over time. A very popular statistic that characterizes trends
is the average percent change (APC). This is the percentage at which rates
change between two consecutive time intervals and it is often assumed to be
constant throughout the entire time period. For convenience, in this paper we
refer to one-year time intervals although similar arguments can be extended
to the case of time intervals of different duration. Suppose we observe nt

events (e.g., incident cases or deaths) in the population Pt at a given time t,
t = 1, . . . ,T . The incidence or mortality rate will be given by rt = nt/Pt . This
is called crude rate as opposed to the standardized rate which is calculated
after taking into account adjustment variables such as, for example, age,
gender or race. The assumption of constant change is suitable for using a
linear regression model (LM) of the type

logrt = a+bt + εt , (1)

where logrt denotes the natural logarithm of the rate observed in year t,
a and b are unknown fixed regression coefficients to be estimated, and εt
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is a normally distributed error term with zero mean and constant variance.
Additional features of the data, such as heteroscedasticity and residual cor-
relation, can be accounted for by using appropriate methods.

Model (1) is based on the assumption that the rates vary continuously
over the positive real line. This assumption has been widely used in several
modelling approaches [e.g., 1, 2]. Incidence and mortality (as well as sur-
vival) rates, in effect, can be considered as a measure of continuous under-
lying risk processes. In order to ensure that the logarithm is defined, usually
a small constant is added to observations with zero events (zero counts).

An estimate of the parameter vector (a,b)′ can be then obtained by solv-
ing the least squares (LS) problem

min
(a,b)∈R2

T

∑
t=1

(logrt −a−bt)2 . (2)

The derivative of the expected value of logrt given t, with respect to t,
provides the rate at which, on average, the outcome varies for a unit change
of t, that is

∂

∂ t
E(logrt |t) = b, (3)

where E(·) denotes the expected value operator. An estimate of the APC
is obtained simply with 100 ·

{
exp

(
b̂LS

)
−1

}
, where b̂LS is the least square

estimate of b. Note that this estimate is based, implicitly, on the assumption
that E(logrt |t) = logE(rt |t) which is, in general, false.

An alternative way of calculating the APC is to model the counts instead
of the log-rates and to estimate the slope b by using a Poisson or log-linear
regression model (GLM) of the type log µt = logPt +a+bt, where µt is the
expected number of events at time t. The advantage of this approach is that,
if the count at time t truly follows a Poisson process with mean µt , there is
no need for using an LM, whose approximating ability depends on the dis-
tribution of the rates. For large counts, the latter is asymptotically normal
but it can be substantially different from a bell-shaped, Gaussian one, when
the number of cases in each time period is small. Moreover, it might be very
difficult, if not impossible, to verify the assumption of normality if the num-
ber of time periods is limited, as is often the case. The Poisson model, also,
can naturally deal with zero counts. However, a model for counts cannot be
used straightforwardly when estimating the APC of standardized rates.

Deviations from the Poisson assumptions can be easily addressed. Two
recurrent situations include overdispersion, (i.e., when the variability of the
outcome exceeds its average) and zero inflation (i.e., a number of zero counts
that is larger than expected). The first can be accommodated with a negative
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binomial link while the second can be accounted for by using a finite mixture
distribution.

In the following, we propose a robust and easy-to-compute measure of
the percent change based on the median of the rates, rather than their mean.
Secondly, we investigate the performance of several models for estimating
the APC under a variety of simulated scenarios. The models considered here
include the Gaussian, the Poisson, the negative binomial (NB), the zero-
inflated Poisson (ZIP) and the median regression (QR). We then present a
real data example and we conclude with some final remarks.

2 Median percent change
It is well known that the LS estimator is sensitive to the presence of in-
fluential observations such as outliers with a substantial leverage. In this
case, the parameter’s estimate is subject to inefficiency (i.e., high estimation
variability) and bias that ultimately might result in misleading conclusions.
We propose a simple way to estimate the annual percent change by using
a robust procedure in the sense of Huber [3] and we call it median percent
change (MPC). By solving the minimization problem

min
(a,b)∈R2

T

∑
t=1
|logrt −a−bt| , (4)

we obtain the least absolute deviations (LAD) estimate of b, b̂LAD. The MPC
is simply obtained as

MPC = 100 ·
{

exp
(
b̂LAD

)
−1

}
. (5)

The minimization problem in expression (4) is equivalent to finding a
median regression line for the data points (t, logrt). Median regression, in
turn, can be considered as a particular case of quantile regression [4, 5].
As in model (1), here we assume that logrt is continuous. This assump-
tion is reasonable if referred not only to the continuity of the underlying
risk process, but also to the numerical proximity of the actual values in real
situations.

The interpretation of the slope estimated in equation (4) is analogous to
that seen for the linear model in equation (1) when using expression (3), but
the function of which the derivative would be now calculated is the quantile
function (i.e., the inverse of the distribution function of logrt) evaluated at
the median. There is also a somewhat elaborated interpretation of the opti-
mal median slope as a weighted median of the gradients of the lines passing
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through each point and the centroid of the points. This interpretation is anal-
ogous to the algebraic identity that expresses the LS solution of equation (2)
as a weighted average of all pairwise slopes. The interested reader can refer
to Koenker [5] and Arthanari and Dodge [6].

Some of the most attractive properties of the median and, more in gen-
eral, of quantile regression models include:

a. They do not depend on distributional assumptions.

b. They are robust to outliers.

c. They possess the property of equivariance to monotone transforma-
tions (e.g., the median of the logarithm of the rates is equal to the
logarithm of the median of the rates).

More precisely, property (a) corresponds to assuming a linear model as in
equation (1) with error term εt having median 0 but otherwise unknown
distribution. A model assumption, however, has to be made with regard to
the variability of the error terms.

The computation of the parameter b in equation (4) can be done effi-
ciently by using linear programming algorithms [7]. Several popular sta-
tistical packages now provide quantile regression estimation functions as,
for example, the library quantreg [8] for the freely available programming
language R [9], SAS and Stata.

3 Simulation study
We conducted a Monte Carlo study to assess the impact that some common
deviations from the hypothesized model can have on the inferential process.
These were: outlier contamination, overdispersion and zero inflation. In ad-
dition, we considered the influence of varying time interval lengths and dif-
ferent magnitudes of the expected number of events. All calculations were
performed using R [9]. We generated cases using pseudo-random processes
with the following settings:

i. Three time intervals of 8, 15 and 30 years respectively. The annual
percent change for each time period was set so as to determine a dou-
bling of the rates from the start to the end of the period. This resulted
in three APC values (steep, medium and shallow): 8.7% (8 years),
4.6% (15 years) and 2.3% (30 years);

ii. Three different mean parameters (small, medium and large). At the
intervals’ midpoints, these were approximately equal to 5, 170, 2060
(8 years interval); 5, 160, 1940 (15 years); 5, 150, 1870 (30 years).
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The case-generating processes were:

a. Poisson process;

b. Poisson process with outliers. These were generated by multiplying
the number of cases by a factor uniformly drawn between 0.5 and 1.5.
Each observation had a 10% probability of being contaminated;

c. Negative binomial process with mean µ and variance µ + µ2/ν . We
set the dispersion parameter to ν = 2µ to obtain a 50% variance infla-
tion (heterogeneous Poisson intensity parameter);

d. Poisson process with 30% zero inflation.

The cases were generated under the processes (a-c) for each of the 9
combinations of the settings in (i) and (ii), giving 27 possible scenarios. The
zero-inflated process (d) was simulated only for the smallest mean parame-
ter, for which an occurrence of Poisson zero-counts would have a probabil-
ity effectively bounded away from zero. The total number of scenarios was
therefore equal to 30. For each scenario, 5,000 datasets were replicated. Fi-
nally, LM, GLM and QR were fitted to each dataset in all scenarios. NB and
ZIP were only fitted to, respectively, overdispersed and zero-inflated data. A
similar analysis was conducted to assess the observed type I error rate (rejec-
tion rate - RR) at the nominal 5% level in all scenarios. This was assessed as
the number of times that the true, null hypothesis of no change was rejected
at the 5% level. For LM and QR, we introduced the customary, albeit arbi-
trary, approximation of 0.5 when zero counts were generated. Each model
was evaluated in terms of relative absolute error (RAE), standard deviation
(SD) and mean square error (MSE) of the estimates. In addition, the average
standard error (ASE), power, average length (AL) and coverage probability
of 95% confidence intervals were calculated.

The choice of the standard error calculation method for the MPC that
was used in the simulations described above had been based on a more ex-
tensive (10,000 replicated datasets) prior study. The type I error rate was,
in fact, evaluated for several methods [8]: ‘iid’, under the assumption of
independent and identically distributed errors; ‘nid’, under the assumption
of independent but not identically distributed errors; ‘rank’, based on the
inversion of a rank test [5] either under the iid or nid assumption; ‘kernel’,
based on the kernel density approach [10]; ‘bootstrap’, in all its variants
implemented in R [8] with varying number of bootstrap replications (50 and
200). In addition, we evaluated the likelihood ratio tests (LRTs) based on the
asymmetric Laplace distribution as in Geraci and Bottai [11] and that based
on the logistic model [12]. Simulation-based studies of the performance of
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most of these methods in the quantile regression framework can be found in
Koenker [5, 13], Redden et al. [12], Buchinsky [14], and Kocherginsky et al.
[15]. However, all these authors discuss mainly coverage probabilities of
related confidence intervals and provide results for sample sizes larger than
those used in our simulation.

First and foremost, we discuss the results (not shown here) concerning
the standard error estimation for QR. We focussed our attention on the Pois-
son processes (a) and (b) as described previously in this Section. For the
uncontaminated Poisson, the ‘nid’ method performed quite well at T = 8,
with RRs close to the nominal 5%. The RRs produced by the ‘iid’ and
‘rank’ methods ranged between 3 and 5 percent. In contrast, none of the
other methods seemed to provide reasonable error rates. For an instance, the
kernel and bootstrap methods were all very conservative; on the contrary,
the LRTs were on the liberal side [12]. At larger number of years, the rank-
based method showed RRs between 3.5 and 6 percent. These values were
insensitive to outlier contamination [15]. For T = 30, the logistic LRT also
provided error rates close to the nominal value.

On the basis of such results, we decided to use the rank-based method
for T ∈ {15,30} in all subsequent simulations. The ‘nid’ option for T = 8
was motivated by the consideration that, being the variance of the log-rates
in each year inversely proportional to the mean number of cases in that year
[1], heteroscedasticity is more evident for rapidly increasing (log-) rates and,
thus, for higher values of the APC.

For the sake of brevity, only selected results will be shown in the tables,
whereas the remaining will be reported in the text if worthy of note. The
complete tables are available upon request from the corresponding author.

Table 1 contrasts LM, GLM and QR for different APC and Poisson mean
values. For the uncontaminated Poisson distribution, all estimators showed a
rejection rate close to the nominal 5%, with the exception of QR which had a
slightly conservative rate at T = 15. GLM outperformed all the other models
in terms of RAE, SD and thus MSE for small values of the Poisson mean.
For increasing average numbers of events, LM and GLM showed similar
results. The median regression, as expected, was slightly less efficient than
LM and GLM. However, the MSE was virtually zero for all models at large
values of the mean, regardless of the size of the APC. QR showed a minor
overestimation of the standard error at medium values of the Poisson mean
being the ASE higher than expected. As a consequence, the AL of the 95%
confidence interval was larger than in the other models. All models had
coverage close to the nominal 95%, although GLM showed a consistently
higher frequency.
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As expected the situation overturns in favor of the median regression
when outliers are introduced (Table 2). The advantage of employing a ro-
bust estimator of the slope of the regression line becomes more apparent at
higher values of the mean parameter. Both the RAE and the MSE favored
QR. The seeming consistently higher power of GLM is, in fact, a conse-
quence of an underestimation of the standard error. It follows that the asso-
ciated test statistics becomes extremely liberal and that confidence intervals
tend to be narrower than expected, as confirmed by the small AL and poor
coverage. On the other hand, LM has an error rate comparable to that of QR
across all simulation settings. However, the LS estimator of the log-rates
showed a higher MSE and a lower power as compared to the LAD estimator
at larger mean values. This is due to the fact that a multiplicative factor of
the rates between 0.5 and 1.5 will have, on average, a much stronger effect
at increasing expected numbers of events.

Table 3 shows the impact of outlier contamination in more depth. The
cumulative distribution of the APC and MPC estimates was calculated for
the entire time periods (8, 15 and 30 years) and compared to the expected
doubling of the rates. All models hit the mark at the middle of the distri-
bution. However, the estimators of the average change (LM, GLM) showed
a heavy-tailed distribution, thus implying a substantial frequency of APC
values away from the middle of the distribution. On the contrary, the dis-
tribution of the MPC was denser around its center. For instance, in this
simulated scenario, there would be a 30% probability of overestimating the
percent change over a 15-year time period by a factor of 150% when using
the mean estimator. This probability would halve when using the median
estimator. Similarly, the probability of underestimating the percent change
of a given amount is higher for the mean than for the median regression.
These differences became more or less pronounced depending on the span
of the time period and, ultimately, on the size of the percent change.

Table 4 shows the performance of the mean and median regression mod-
els when the data exhibits overdispersion. In this case, all models had MSE
approximately equal to zero at larger values of the mean. GLM seemed to
have an advantage over NB in terms of power. However, the comparison
here is complicated by their inflated type I error rates, far from the nomi-
nal 5%. Whereas the RR for NB decreased for increasing number of years,
GLM showed no improvement. On the other hand, the tests associated with
LM and QR had lower power but more reasonable RRs.

As expected, ZIP outperformed the other models in the last scenario (Ta-
ble 5). Once again, GLM was quite liberal in terms of RR. As for LM and
QR, their performance seemed acceptable when the number of years was
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smallest. Although they had lower MSEs, their bias was larger. This is not
surprising if we consider that the logarithmic transformation involved cannot
naturally handle the presence of zero counts unless they undergo an approx-
imation. However, such approximation will introduce a distortion that, in
the two models, follows from different mechanisms. In LMs, the extent of
the impact of the approximation on the parameters’ estimation will depend
on the proportion of zeros and on the value of approximation itself [see for
example 16]. QRs are, on the contrary, invariant to censoring from below up
to the median [17]. In any case, a careful evaluation of the appropriateness
and motivation for a log transformation in presence of zero counts needs to
be done beforehand.

4 English cancer registry data
Secular trends in cancer incidence can provide insightful and important clues
to the understanding of the etiology of cancer, useful quantitative measures
of the effectiveness of campaigns on prevention, as well as a computational
base for predicting the future load on national health systems. Statistical
analyses often focus on specific age groups for which targeted healthcare
services must be provided. For example, this is the case for children or
young adults affected by cancer. Although tumors in young people represent
a major source of morbidity and mortality [18, 19], specific cancer types
often pose a challenge in statistical terms due to their low incidence among
the population. Depending on the depth of the analysis, zero-counts are
more likely to occur if, in addition, high-level stratification is imposed on
the data. On the other hand, although case aggregation might represent a
way to overcome such hindrance, information on specific groups becomes
unavailable.

To illustrate the methodology described in the previous sections, we an-
alyzed data provided by the Northern and Yorkshire Cancer Registry and
Information Service on cancer incidence in England, 1990 to 2006. We se-
lected cases aged less than 40 years and assigned them to five age groups.
Tumours were classified according to a morphology-based diagnostic scheme
[20]. For illustrative purposes, we report the analysis of selected haematopoi-
etic and brain tumours: acute lymphoid leukaemia (ALL), acute myeloid
leukaemia (AML), astrocytomas (AC) and oligodendroglioma (ODG). Pop-
ulation estimates were obtained from the Office for National Statistics and
yearly rates were calculated per million person-years. We then estimated the
average and median percent change. In view of the simulation results, the
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standard error of the MPC was calculated using the ‘rank’ method for all
groups except ODG cases aged 20 to 24 years, for which the ‘nid’ method
was employed.

Figure 1 shows the time plots and the estimated density of the log-rates
by age and diagnostic group. Except in very few cases, the density of the
transformed rates can hardly be approximated by a normal curve. For ALL
cases aged 25 to 29 years and AML cases aged 20 to 24 years, the regression
lines estimated by LM and GLM crossed the line estimated by QR. As a con-
sequence, the APC and MPC had opposite signs (Table 6). The confidence
intervals, however, were too wide to conclude whether there was an increase
or a decrease of ALL and AML rates in those age groups. In contrast, the
MPC for AML cases aged 25 to 29 years was equal to 0.9% (0.5% to 2%),
whereas the APC had a similar value but wider confidence intervals (Table
6).

The number of AC cases in young people aged less than 15 years jumped
from approximately 85 cases in the first two years to 120 in the following
year, resulting in a rather unusual pattern (Figure 1). AC rates in this age
group increased significantly according to the APC estimates. The latter
were equal to 1.8% (0.6% to 3.1%) and to 1.7% (0.7% to 2.6%) for LM
and GLM, respectively. However, the MPC was not significant and equal to
0.8% (0.0% to 3%). In this case, the two points at the beginning of the time
period have a substantial leverage on the percent change estimated by LM
or GLM but they have little effect on the MPC.

Another case of high leverage points can be seen for ODG. In 1990, there
were no registered cases of ODG among people aged 25 to 29 years. The
number of ODG cases in all following years was around nine. Under Poisson
assumptions, a zero would have, in this case, a probability of occurrence of
around 0.01%. However, it is equally concerning that the zero happens to
be at the beginning of the time period, where, as we have seen, the outliers
usually have more weight on the slope of regression lines (Figure 1). After
excluding the year 1990 from the calculation, the estimate of the APC was
lower (around 2%) and not statistically significant.

5 Conclusions
We presented a robust approach to the estimation of the percent change in
incidence and mortality rates over time. In an extensive simulation study,
our method showed a superior performance as compared to those methods
based on LS estimation when the data are contaminated by outliers. In other
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scenarios, the MPC was less competitive than APC although models that
were expected to perform best were affected by the size of the annual rate of
change and by the average number of events. We showed that it is difficult
to support normality assumptions when few time points are available and
the number of events is small as in the case of the cancer data analysis.
Another advantage of our method is that median regression does not depend
on distributional assumptions. Moreover, if the distribution of the rates is
asymmetric, the median has a more meaningful interpretation than the mean.

Quantile regression is traditionally associated with sampling from abso-
lutely continuous populations. Several attempts to deal with discrete data ap-
peared in the literature as, for example, the papers of Manski [21], Horowitz
[22], and Lee [23]. Most recently, Machado and Santos Silva [17] described
an interesting approach to quantile estimation based on count jittering which
induces a form of smoothing necessary for valid inference. Our method is,
in contrast, based on the assumption of (approximately) continuous rates.
For comparison purposes, we implemented Machado and Santos Silva’s ap-
proach as described in Section 4 of their paper [17] and we applied it to our
simulated data. We adapted their equation (7) to our case and we estimated
the median model using the response defined as

zt =

{
log(nt +ut −0.5)− logPt nt +ut > 0.5
log(0.5)− logPt nt +ut ≤ 0.5

where ut is the uniform dither at time t, t = 1, . . . ,T . As expected, the esti-
mates of the slopes were very similar to those obtained when assuming con-
tinuity of the rates. However, due to the relatively small sample size (that
is, the number of times T ) the estimated variance of the regression coeffi-
cients was unacceptably large, yielding rejection frequencies between 8 and
84 percent under Poisson processes at the nominal 5%. Therefore, a quan-
tile approach for count data to estimate the MPC, which, in a sense, mimes
a Poisson approach to APC estimation, seems to be unnecessary within the
experimental framework adopted in this paper.

The simulation study provided an important base of evaluation for APC
estimation. In particular, we do not recommend using the log transformation
of the rates when there is a substantial occurrence of zero-counts as in the
case of a small mean. In such scenario, the GLM provides a better perfor-
mance as far as the data do not exhibit overdispersion and/or zero-inflation
or anomalous observations. In the latter case, the analysis of the ODG rates
showed that the MPC was more appropriate than the APC, even if the aver-
age number of cases was low. The simulation parameters were kept to values
that can be commonly found in real cancer incidence data applications. For
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increasing number of events and number of time periods, different asymp-
totic approximations come into play. Whether the percent change is affected
by high leverage points needs to be assessed case by case. Likewise, the
choice of calculation method of the MPC standard errors needs to be made
accordingly. We believe that, as a good practice, both APC and MPC should
be reported when sensitivity issues arise.

Finally, the present study was aimed at addressing the violation of some
distributional assumptions under the hypothesis of constant change. Model
misspecification of the linear predictor represents a different, although im-
portant, issue. For example, in case of changes in trends one could use a
spline-type approach [1]. Piecewise linear robust regression may well offer
a possible development of the method proposed in this paper.

Acknowledgements
This study has been funded by Cancer Research UK.

References
[1] Kim, HJ, Fay, MP, Feuer, EJ, Midthune, DN. Permutation tests for

joinpoint regression with applications to cancer rates. Statistics in
Medicine 2000; 19(3):335–351.

[2] Fay, MP, Tiwari, RC, Feuer, EJ, Zou, Z. Estimating average annual
percent change for disease rates without assuming constant change.
Biometrics 2006; 62(3):847–854.

[3] Huber, PJ. Robust Statistics. 1st edn. Wiley, 1981.

[4] Koenker, R, Bassett, G. Regression quantiles. Econometrica 1978;
46(1):33–50.

[5] Koenker, R. Quantile Regression. Econometric Society Monograph
Series. Cambridge University Press, New York, 2005.

[6] Arthanari, T, Dodge, Y. Mathematical Programming in Statistics. Wi-
ley, New York, 1981.

[7] Portnoy, S, Koenker, R. The Gaussian hare and the Laplacian tortoise:
Computability of squared-error versus absolute-error estimators. Sta-
tistical Science 1997; 12(4):279–300.

12



[8] Koenker, R. quantreg: Quantile Regression, 2009. URL
http://CRAN.R-project.org/package=quantreg, R package
version 4.44.

[9] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2009. URL http://www.R-project.org, ISBN 3-900051-
07-0.

[10] Powell, JL. Estimation of monotonic regression models under quantile
restrictions. In Nonparametric and Semiparametric Methods in Econo-
metrics, Engle, R, McFadden, D, eds. North-Holland, New York, 1991;
357–384.

[11] Geraci, M, Bottai, M. Quantile regression for longitudinal data using
the asymmetric Laplace distribution. Biostatistics 2007; 8(1):140–154.

[12] Redden, DT, Fernandez, JR, Allison, DB. A simple significance test
for quantile regression. Statistics in Medicine 2004; 23(16):2587–
2597.

[13] Koenker, R. Confidence intervals for regression quantiles. In Asymp-
totic Statistics, Mandl, P, Huskova, M, eds. Springer-Verlag, New
York, 1994; 349–359.

[14] Buchinsky, M. Estimating the asymptotic covariance matrix for quan-
tile regression models. a Monte Carlo study. Journal of Econometrics
1995; 68(2):303–338.

[15] Kocherginsky, M, He, X, Mu, Y. Practical confidence intervals for re-
gression quantiles. Journal of Computational and Graphical Statistics
2005; 14(1):41–55.

[16] O’Hara, RB, Kotze, DJ. Do not log-transform count data. Methods in
Ecology and Evolution 2010; 1(2):118–122.

[17] Machado, JAF, Santos Silva, JMC. Quantiles for counts. Journal of
the American Statistical Association 2005; 100(472):1226–1237.

[18] Geraci, M, Birch, JM, Alston, RD, Moran, A, Eden, TOB. Cancer mor-
tality in 13 to 29-year-olds in England and Wales, 1981-2005. British
Journal of Cancer 2007; 97(11):1588–1594.

13



[19] Alston, RD, Geraci, M, Eden, TOB, Moran, A, Rowan, S, Birch, JM.
Changes in cancer incidence in teenagers and young adults (ages 13 to
24 years) in England 1979-2003. Cancer 2008; 113(10):2807–2815.

[20] Birch, JM, Alston, RD, Kelsey, AM, Quinn, MJ, Babb, P, McNally,
RJQ. Classification and incidence of cancers in adolescents and
young adults in England 1979-1997. British Journal of Cancer 2002;
87(11):1267–1274.

[21] Manski, CF. Semiparametric analysis of discrete response: Asymp-
totic properties of the maximum score estimator. Journal of Econo-
metrics 1985; 27(3):313–333.

[22] Horowitz, JL. A smoothed maximum score estimator for the binary
response model. Econometrica: Journal of the Econometric Society
1992; 60(3):505–531.

[23] Lee, M. Median regression for ordered discrete response. Journal of
Econometrics 1992; 51(1-2):59–77.

14



Ta
bl

e
1:

Pe
rf

or
m

an
ce

st
at

is
tic

s
of

th
e

sl
op

e
es

tim
at

or
s

un
de

r
Po

is
so

n
di

st
ri

bu
tio

ns
.

A
bb

re
vi

at
io

ns
:

R
A

E
,R

el
at

iv
e

ab
so

lu
te

er
ro

r;
SD

,s
ta

nd
ar

d
de

vi
at

io
n;

M
SE

,m
ea

n
sq

ua
re

d
er

ro
r;

A
SE

,a
ve

ra
ge

st
an

da
rd

er
ro

r;
A

L
,c

on
fid

en
ce

in
te

rv
al

av
er

ag
e

le
ng

th
,R

R
,r

ej
ec

tio
n

ra
te

.
A

PC
/m

ea
n

R
A

E
SD

M
SE

A
SE

Po
w

er
A

L
C

ov
er

ag
e

R
R

st
ee

p/
sm

al
l

L
M

5.
11

4
0.

56
9

0.
32

4
0.

53
1

0.
05

1
2.

59
9

0.
95

2
0.

05
3

G
L

M
4.

47
3

0.
49

1
0.

24
1

0.
48

6
0.

05
0

2.
38

1
0.

98
9

0.
05

4
Q

R
5.

30
2

0.
60

5
0.

36
6

0.
58

5
0.

05
3

2.
86

3
0.

94
9

0.
05

4
m

ed
iu

m
/m

ed
iu

m
L

M
1.

14
1

0.
06

7
0.

00
4

0.
06

5
0.

09
6

0.
28

2
0.

94
9

0.
04

7
G

L
M

1.
13

7
0.

06
6

0.
00

4
0.

06
6

0.
10

7
0.

28
7

0.
96

6
0.

04
5

Q
R

1.
36

6
0.

08
0

0.
00

6
0.

09
5

0.
06

2
0.

37
2

0.
96

2
0.

03
7

st
ee

p/
la

rg
e

L
M

0.
22

8
0.

02
5

0.
00

1
0.

02
3

0.
86

0
0.

11
1

0.
94

4
0.

04
9

G
L

M
0.

22
8

0.
02

5
0.

00
1

0.
02

4
0.

95
4

0.
11

6
0.

98
1

0.
05

2
Q

R
0.

26
5

0.
02

9
0.

00
1

0.
02

5
0.

77
0

0.
12

5
0.

94
4

0.
05

6
m

ed
iu

m
/la

rg
e

L
M

0.
33

1
0.

01
9

0.
00

0
0.

01
9

0.
61

6
0.

08
1

0.
95

0
0.

05
2

G
L

M
0.

33
1

0.
01

9
0.

00
0

0.
01

9
0.

67
8

0.
08

2
0.

96
8

0.
05

6
Q

R
0.

40
1

0.
02

3
0.

00
1

0.
02

7
0.

41
7

0.
10

5
0.

95
8

0.
04

1
sh

al
lo

w
/la

rg
e

L
M

0.
48

3
0.

01
4

0.
00

0
0.

01
4

0.
35

6
0.

05
7

0.
95

4
0.

05
1

G
L

M
0.

48
3

0.
01

4
0.

00
0

0.
01

4
0.

37
6

0.
05

8
0.

96
2

0.
05

2
Q

R
0.

60
9

0.
01

8
0.

00
0

0.
01

8
0.

26
2

0.
07

1
0.

95
1

0.
05

7

15



Ta
bl

e
2:

Pe
rf

or
m

an
ce

st
at

is
tic

s
of

th
e

sl
op

e
es

tim
at

or
s

un
de

rP
oi

ss
on

di
st

ri
bu

tio
ns

an
d

ou
tli

er
co

nt
am

in
at

io
n.

A
b-

br
ev

ia
tio

ns
:

R
A

E
,R

el
at

iv
e

ab
so

lu
te

er
ro

r;
SD

,s
ta

nd
ar

d
de

vi
at

io
n;

M
SE

,m
ea

n
sq

ua
re

d
er

ro
r;

A
SE

,a
ve

ra
ge

st
an

-
da

rd
er

ro
r;

A
L

,c
on

fid
en

ce
in

te
rv

al
av

er
ag

e
le

ng
th

,R
R

,r
ej

ec
tio

n
ra

te
.

R
A

E
SD

M
SE

A
SE

Po
w

er
A

L
C

ov
er

ag
e

R
R

st
ee

p/
sm

al
l

L
M

5.
22

8
0.

58
2

0.
33

9
0.

54
4

0.
05

4
2.

66
4

0.
95

1
0.

04
9

G
L

M
4.

57
4

0.
50

3
0.

25
3

0.
48

6
0.

05
8

2.
38

0
0.

98
3

0.
05

1
Q

R
5.

30
5

0.
60

4
0.

36
4

0.
59

8
0.

04
8

2.
92

8
0.

95
2

0.
04

7
m

ed
iu

m
/m

ed
iu

m
L

M
1.

78
6

0.
10

7
0.

01
1

0.
09

9
0.

07
6

0.
42

9
0.

95
6

0.
04

5
G

L
M

1.
72

3
0.

10
2

0.
01

0
0.

06
6

0.
23

2
0.

28
7

0.
84

8
0.

17
4

Q
R

1.
54

7
0.

09
1

0.
00

8
0.

11
8

0.
06

9
0.

46
1

0.
96

0
0.

03
7

st
ee

p/
la

rg
e

L
M

0.
78

1
0.

10
7

0.
01

1
0.

08
0

0.
45

6
0.

39
2

0.
96

8
0.

03
6

G
L

M
0.

75
4

0.
10

1
0.

01
0

0.
02

4
0.

85
2

0.
11

7
0.

65
2

0.
39

5
Q

R
0.

31
2

0.
03

8
0.

00
1

0.
07

8
0.

37
9

0.
38

3
0.

97
2

0.
03

2
m

ed
iu

m
/la

rg
e

L
M

1.
28

2
0.

08
5

0.
00

7
0.

07
0

0.
23

5
0.

30
2

0.
96

0
0.

03
1

G
L

M
1.

22
4

0.
07

9
0.

00
6

0.
01

9
0.

71
3

0.
08

2
0.

53
4

0.
49

6
Q

R
0.

45
6

0.
02

7
0.

00
1

0.
04

3
0.

33
6

0.
16

9
0.

96
1

0.
03

9
sh

al
lo

w
/la

rg
e

L
M

1.
97

9
0.

06
1

0.
00

4
0.

05
6

0.
09

7
0.

22
9

0.
96

8
0.

03
4

G
L

M
1.

86
5

0.
05

7
0.

00
3

0.
01

4
0.

62
2

0.
05

8
0.

44
7

0.
56

7
Q

R
0.

67
5

0.
02

0
0.

00
0

0.
02

1
0.

22
8

0.
08

2
0.

94
6

0.
04

9

16



Ta
bl

e
3:

O
ut

lie
r

co
nt

am
in

at
io

n.
D

ec
ile

s
of

th
e

es
tim

at
es

of
th

e
re

la
tiv

e
ch

an
ge

fo
r

di
ff

er
en

t
tim

e
pe

ri
od

s
at

th
e

la
rg

es
ts

im
ul

at
ed

va
lu

e
of

th
e

m
ea

n
pa

ra
m

et
er

.T
he

ex
pe

ct
ed

ov
er

al
lr

el
at

iv
e

ch
an

ge
is

2.
8

ye
ar

s
15

ye
ar

s
30

ye
ar

s
L

M
G

L
M

Q
R

L
M

G
L

M
Q

R
L

M
G

L
M

Q
R

M
in

0.
02

0.
03

0.
10

0.
00

0.
01

0.
12

0.
00

0.
00

0.
19

10
th

0.
80

0.
84

1.
43

0.
45

0.
47

1.
20

0.
22

0.
25

0.
95

20
th

1.
37

1.
37

1.
62

0.
92

0.
94

1.
46

0.
54

0.
58

1.
24

30
th

1.
63

1.
64

1.
75

1.
36

1.
37

1.
65

0.
94

0.
98

1.
49

40
th

1.
82

1.
82

1.
87

1.
72

1.
72

1.
83

1.
40

1.
43

1.
75

50
th

1.
98

1.
98

1.
99

2.
03

2.
03

2.
00

2.
01

1.
99

2.
01

60
th

2.
17

2.
17

2.
11

2.
42

2.
42

2.
21

2.
96

2.
87

2.
34

70
th

2.
41

2.
42

2.
26

3.
01

3.
00

2.
46

4.
42

4.
42

2.
73

80
th

2.
88

2.
89

2.
46

4.
49

4.
38

2.
78

7.
93

7.
63

3.
30

90
th

5.
10

5.
08

2.
77

8.
99

8.
71

3.
32

19
.8

7
17

.2
3

4.
28

M
ax

31
8.

61
23

5.
98

49
.8

2
54

9.
19

28
3.

23
11

.5
5

23
33

.9
2

22
82

.8
9

14
.9

1

17



Ta
bl

e
4:

Pe
rf

or
m

an
ce

st
at

is
tic

s
of

th
e

sl
op

e
es

tim
at

or
s

un
de

r
ov

er
di

sp
er

se
d

di
st

ri
bu

tio
ns

.
A

bb
re

vi
at

io
ns

:
R

A
E

,
R

el
at

iv
e

ab
so

lu
te

er
ro

r;
SD

,
st

an
da

rd
de

vi
at

io
n;

M
SE

,
m

ea
n

sq
ua

re
d

er
ro

r;
A

SE
,

av
er

ag
e

st
an

da
rd

er
ro

r;
A

L
,

co
nfi

de
nc

e
in

te
rv

al
av

er
ag

e
le

ng
th

,R
R

,r
ej

ec
tio

n
ra

te
.

A
PC

/m
ea

n
R

A
E

SD
M

SE
A

SE
Po

w
er

A
L

C
ov

er
ag

e
R

R
st

ee
p/

la
rg

e
L

M
0.

26
8

0.
02

9
0.

00
1

0.
02

8
0.

70
0

0.
13

7
0.

94
5

0.
04

4
G

L
M

0.
26

8
0.

02
9

0.
00

1
0.

02
4

0.
91

1
0.

11
6

0.
95

1
0.

11
0

Q
R

0.
31

1
0.

03
4

0.
00

1
0.

03
1

0.
59

8
0.

15
4

0.
94

3
0.

05
1

N
B

0.
26

8
0.

02
9

0.
00

1
0.

02
7

0.
86

2
0.

13
1

0.
96

6
0.

08
4

m
ed

iu
m

/la
rg

e
L

M
0.

39
7

0.
02

3
0.

00
1

0.
02

3
0.

44
8

0.
09

9
0.

94
9

0.
05

3
G

L
M

0.
39

7
0.

02
3

0.
00

1
0.

01
9

0.
65

4
0.

08
2

0.
92

5
0.

12
1

Q
R

0.
49

2
0.

02
9

0.
00

1
0.

03
3

0.
30

0
0.

13
0

0.
95

9
0.

03
9

N
B

0.
39

7
0.

02
3

0.
00

1
0.

02
2

0.
55

3
0.

09
5

0.
95

2
0.

07
9

sh
al

lo
w

/la
rg

e
L

M
0.

59
1

0.
01

7
0.

00
0

0.
01

7
0.

24
3

0.
07

0
0.

94
9

0.
04

7
G

L
M

0.
59

0
0.

01
7

0.
00

0
0.

01
4

0.
39

1
0.

05
8

0.
91

3
0.

11
4

Q
R

0.
74

9
0.

02
2

0.
00

0
0.

02
2

0.
18

6
0.

08
7

0.
94

1
0.

04
5

N
B

0.
59

0
0.

01
7

0.
00

0
0.

01
7

0.
28

9
0.

06
9

0.
94

8
0.

06
1

18



Ta
bl

e
5:

Pe
rf

or
m

an
ce

st
at

is
tic

s
of

th
e

sl
op

e
es

tim
at

or
s

un
de

r
ze

ro
-i

nfl
at

ed
di

st
ri

bu
tio

ns
.

A
bb

re
vi

at
io

ns
:

R
A

E
,

R
el

at
iv

e
ab

so
lu

te
er

ro
r;

SD
,

st
an

da
rd

de
vi

at
io

n;
M

SE
,

m
ea

n
sq

ua
re

d
er

ro
r;

A
SE

,
av

er
ag

e
st

an
da

rd
er

ro
r;

A
L

,
co

nfi
de

nc
e

in
te

rv
al

av
er

ag
e

le
ng

th
,R

R
,r

ej
ec

tio
n

ra
te

.
A

PC
/m

ea
n

R
A

E
SD

M
SE

A
SE

Po
w

er
A

L
C

ov
er

ag
e

R
R

st
ee

p/
sm

al
l

L
M

11
.1

40
1.

19
2

1.
42

5
1.

16
5

0.
05

0
5.

70
2

0.
94

9
0.

05
3

G
L

M
9.

68
9

1.
12

7
1.

27
0

0.
62

1
0.

22
5

3.
04

1
0.

88
0

0.
19

9
Q

R
12

.8
43

1.
49

5
2.

24
3

1.
22

8
0.

06
1

6.
00

9
0.

93
9

0.
06

1
Z

IP
6.

90
6

0.
94

5
0.

89
2

0.
70

9
0.

05
7

3.
47

2
0.

98
0

0.
06

2
m

ed
iu

m
/s

m
al

l
L

M
15

.6
55

0.
89

5
0.

80
2

0.
89

5
0.

05
1

3.
86

9
0.

94
8

0.
04

8
G

L
M

13
.1

02
0.

77
5

0.
60

0
0.

47
4

0.
20

7
2.

04
7

0.
83

7
0.

20
4

Q
R

21
.1

93
1.

30
8

1.
71

1
1.

39
8

0.
04

0
5.

47
9

0.
95

8
0.

03
5

Z
IP

8.
76

2
0.

53
0

0.
28

1
0.

50
0

0.
05

0
2.

16
1

0.
96

8
0.

04
5

sh
al

lo
w

/s
m

al
l

L
M

22
.6

08
0.

64
8

0.
42

0
0.

65
2

0.
04

8
2.

67
0

0.
95

1
0.

04
7

G
L

M
18

.6
18

0.
54

4
0.

29
6

0.
34

6
0.

20
8

1.
41

6
0.

81
2

0.
19

7
Q

R
32

.7
96

1.
05

9
1.

12
1

1.
05

3
0.

04
8

4.
13

0
0.

95
4

0.
04

9
Z

IP
12

.4
97

0.
36

5
0.

13
3

0.
35

9
0.

04
7

1.
47

0
0.

96
2

0.
04

1

19



Ta
bl

e
6:

N
um

be
ro

fc
as

es
(N

),
ra

te
s

(R
)a

nd
pe

rc
en

tc
ha

ng
e

fo
rs

el
ec

te
d

tu
m

ou
rs

in
E

ng
lis

h
pe

op
le

ag
ed

le
ss

th
an

40
ye

ar
s,

19
90

-2
00

6.
A

bb
re

vi
at

io
ns

:
A

C
,a

st
ro

cy
to

m
as

;
A

L
L

,a
cu

te
ly

m
ph

oi
d

le
uk

ae
m

ia
;

A
M

L
,a

cu
te

m
ye

lo
id

le
uk

ae
m

ia
;O

D
G

,o
lig

od
en

dr
og

lio
m

a.
A

ge
gr

ou
p

A
PC

(1
)

A
PC

(2
)

M
PC

(y
ea

rs
)

N
R

va
lu

e
lo

w
er

up
pe

r
va

lu
e

lo
w

er
up

pe
r

va
lu

e
lo

w
er

up
pe

r
A

L
L

0-
14

56
29

35
.8

0.
5

-0
.2

1.
1

0.
5

-0
.1

1.
1

0.
4

0.
1

1.
2

15
-1

9
72

6
14

.1
0.

3
-1

.1
1.

7
0.

3
-1

.3
1.

9
0.

3
-1

.2
1.

1
20

-2
4

41
4

7.
5

2.
5

1.
0

4.
1

2.
4

0.
3

4.
6

1.
9

0.
8

5.
0

25
-2

9
29

1
4.

8
-0

.5
-3

.3
2.

5
-0

.3
-2

.8
2.

3
1.

0
-2

.9
2.

9
30

-3
9

56
1

4.
5

-0
.7

-2
.6

1.
3

-0
.7

-2
.5

1.
2

-1
.1

-2
.5

2.
3

A
M

L
0-

14
10

99
7.

0
0.

0
-1

.0
1.

1
0.

1
-1

.2
1.

4
0.

0
-1

.0
1.

0
15

-1
9

37
9

7.
3

0.
4

-1
.5

2.
3

0.
2

-1
.9

2.
5

0.
4

-2
.7

1.
7

20
-2

4
48

6
8.

8
-0

.8
-3

.4
1.

9
-1

.0
-2

.9
0.

9
1.

8
-3

.1
2.

3
25

-2
9

59
2

9.
8

1.
1

-0
.5

2.
7

1.
1

-0
.7

2.
9

0.
9

0.
5

2.
0

30
-3

9
14

31
11

.5
0.

2
-1

.6
2.

0
-0

.1
-1

.2
1.

1
-0

.8
-2

.3
1.

9
A

C
0-

14
21

28
13

.5
1.

8
0.

6
3.

1
1.

7
0.

7
2.

6
0.

8
0.

0
3.

0
15

-1
9

52
2

10
.1

0.
8

-1
.6

3.
2

0.
6

-1
.2

2.
6

2.
0

-1
.5

3.
7

20
-2

4
61

0
11

.1
0.

2
-1

.5
2.

1
0.

4
-1

.3
2.

1
0.

2
-3

.5
2.

7
25

-2
9

88
1

14
.5

1.
4

-0
.5

3.
3

1.
5

0.
1

3.
0

2.
9

-0
.7

3.
0

30
-3

9
27

03
21

.6
0.

8
-0

.4
2.

0
0.

6
-0

.2
1.

5
0.

4
-0

.2
1.

6
O

D
G

0-
14

61
0.

4
-1

.2
-9

.4
7.

6
-1

.5
-6

.9
4.

2
-3

.0
-6

.6
10

.2
15

-1
9

40
0.

8
1.

5
-5

.4
8.

8
2.

5
-4

.3
9.

7
3.

1
-1

.5
10

.0
20

-2
4

82
1.

5
4.

7
-1

.8
11

.6
5.

4
0.

5
10

.5
9.

5
0.

2
19

.7
25

-2
9

14
0

2.
3

8.
1

0.
6

16
.3

4.
1

0.
3

8.
0

3.
3

-2
.3

9.
5

30
-3

9
52

9
4.

2
4.

2
2.

1
6.

4
3.

8
1.

8
5.

9
2.

5
1.

7
6.

9
(1

)A
ve

ra
ge

pe
rc

en
tc

ha
ng

e
es

tim
at

ed
by

lin
ea

rr
eg

re
ss

io
n

(2
)A

ve
ra

ge
pe

rc
en

tc
ha

ng
e

es
tim

at
ed

by
Po

is
so

n
re

gr
es

si
on

20



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

year

lra
te

ALL

0−
14

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

year

lra
te

AML

●

●

● ●

●
● ●

●

● ●
●

●

●

●

●

●

●

year

lra
te

AC

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

year

lra
te

ODG

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

year

lra
te

15
−

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

year

lra
te

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

year

lra
te

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

year

lra
te

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

year

lra
te

20
−

24

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

year

lra
te

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

year

lra
te

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

year

lra
te

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

year

lra
te

25
−

29 ●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

year

lra
te

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

year

lra
te

●

●

●

●

●

●
● ●

●
● ●

●

●

● ●

●

●

year

lra
te

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

year

lra
te

30
−

39

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

year

lra
te

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

year

lra
te

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

year

lra
te

xl[[j]]

yl
[[j

]]

de
ns

ity

xl[[j]]

yl
[[j

]]

xl[[j]]

yl
[[j

]]

xl[[j]]

yl
[[j

]]

Figure 1: Time plots of the log-rates of selected tumors for different age groups
(first five rows) with regression lines superimposed (linear model, dashed; log-
linear model, dotted; median regression model, solid) and density of the log-rates
(bottom row) for each age group (darker to lighter shades of grey for, respec-
tively, younger to older groups). Abbreviations: AC, astrocytomas; ALL, acute
lymphoid leukaemia; AML, acute myeloid leukaemia; ODG, oligodendroglioma.21


