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Abstract‡ 
Programmable networking is an increasingly popular 
area of research in both industry and academia. 
Although most programmable network research 
projects seem to focus on the router architecture rather 
than on issues relating to the management of 
programmable networks, there are numerous research 
groups (discussed in [55]) that have incorporated 
management middleware into the programmable 
network router software. However, none seem to be 
concerned with the effective management of a large 
heterogeneous programmable network. The 
requirements of such a middleware are outlined in this 
paper. There are a number of fundamental middleware 
principals that are addressed in this paper: these 
include management paradigms, configuration 
delivery, scalability and transactions. Security, fault 
tolerance and usability are also discussed; although 
these are not essential parts of the middleware, they 
must be addressed if the programmable network 
management middleware is to be accepted by industry 
and adopted by other research projects. 

1 Introduction 
The Internet started out as a research project, funded by 
the Defence Advanced Research Projects Agency, 
called ARPANET. The project focused on best-effort 
routing mechanisms that were designed and 
implemented in the hope that it would still be possible 
for military computers to communicate if nuclear war 
broke out. Since then, the Internet has been through a 
number of evolutionary cycles; it now supports a multi-
billion pound industry that mainly revolves around e-
commerce, media delivery and service provision. 
Although the way in which the Internet is used has 
drastically changed since its early days, the 
fundamental technology has changed very little. For 
the vast majority of Internet communications, data is 
transmitted in a best-effort manner. Communications 
generally have no relationship to business models: data 
that generates large revenues is not treated differently 
to those that generate little or no revenue. Since the 
Internet is becoming more and more congested, e-
businesses are keen to control internal network 
congestion and provide services in the most profitable 
way possible. The highly restricted functionality of 
most ‘off the shelf’ routers does not allow packets to be 
routed in a highly customised way defined by the 
router’s owner; Internet routing technology needs to be 

evolved to cater for the new requirements. 
Programmable networking technology is likely to be 
accepted by industry as the solution to this problem. By 
programming network routers, the process of routing 
data can be controlled in a highly flexible and 
customisable manner; this allows Internet corporations 
to control network congestion according to a business 
model. 
 
Programmable networking is a relatively new area of 
research, the technology is therefore in its infancy. The 
main focus of research in this area seems to be the 
software architecture of the programmable network 
routers that constitute the programmable network. 
There are many approaches to network 
programmability, including Active Networks [52] and 
OpenSig [48] projects, however all take the view that 
the software that controls the routing process can be 
modified. This project does not intend to focus on a 
particular programmable network paradigm; rather, the 
aim is to research a middleware that can be used to 
manage a wide range of programmable network 
architectures. 
 
According to [63]: middleware is the term usually 
given to the software layer that abstracts 
communications concepts from the designer of a 
distributed application; it is located between the 
operating system and the application. The concept of 
middleware is not a new: it is the focus of a very active 
research area and also has a strong presence in many 
modern day software engineering projects. There are 
numerous middleware types (some of are discussed 
later), all of which have a diverse range of applications. 
From the above definition, it is fairly clear that the 
process of managing a network consisting of many 
programmable routers can benefit from middleware: it 
is possible to add functionality without complicating 
the design of the system.  

 
Many research groups seem to agree that, due to the 
increased complexity of programmable network routers 
(with respect to current ‘off the shelf’ routers), 
management middleware is required to allow the 
efficient and correct configuration of the nodes. 
However, programmable network management 
middleware is generally not a high research priority. Of 
those projects that do approach programmable network 
management issues, it is generally accepted that 
programmable network routers will be configured 
individually rather than in groups. This paper takes the 
view that this approach is not acceptable: the 
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programmable network management middleware 
should be scalable. 
 
This project attempts to separate the management 
middleware from the programmable router 
architecture, thus allowing the middleware to be 
deployed into a diverse range of programmable 
network architectures and also enabling the 
management of a set of programmable routers with 
differing software architectures. We refer to this as an 
homogenous programmable network. The 
programmable routers, the administrators, and nodes 
that provide middleware mechanisms are collectively 
termed as a ‘community’. We consider a node to be 
any location that the middleware can communicate 
with: instances of programmable network routers are 
nodes whereas network interfaces and computers are 
not. 
 
This paper outlines the requirements of a middleware 
intended to simplify the task of managing a large 
programmable network; the rationales for the 
requirements are also presented. It must be noted that 
this paper is not a design document: the architecture of 
the middleware and details on  the implementation of 
the mechanisms outlined in this paper will be 
addressed in the design phase of this project. 
 
The paper is structured as follows: Section 2 discusses 
the fundamental mechanisms required to manage a 
community, Section 3 presents arguments in support of 
a transactional middleware, Section 4 approaches 
security issues, and Section 5 considers the usability 
requirements. Related work is presented in Section 6, 
conclusions are drawn and future work in outlined in 
Section 7. 

2 Middleware Fundamentals 
In this section, the fundamental mechanisms and 
principles of the middleware are discussed. This is 
done in five parts. We first discuss ways in which a 
community can be managed, and what support there 
should be in the middleware for these management 
techniques. We then illustrate the issues regarding 
communication between community members, and 
after that describe how community members discover 
the address of other nodes. We outline the support 
required from the network and discuss scalability 
requirements before finally outlining the four aspects 
of transactions.  

2.1 Management 
Management is the process whereby an administrator 
configures a node. The term ‘administrator’ is used to 
describe a process that is either performing 
management operations or capable of performing 
management operations in response to some event. A 
node which has performed management operations, but 
has since revoked its compliance with the definition of 
an administrator, should not be referred to as an 
administrator. Similarly, nodes which will perform 

operations in the future, but do not yet comply with the 
definition, are not considered as administrators. Since 
all administrators must comply with the middleware 
requirements set out in this paper, administrators are 
community members. 
 
The programmable network can be managed in a 
number of ways (defined by its designer): it could be 
autonomo us (such as in Android [47]) or done by a 
human administrator who interacts with some (perhaps 
graphical) user interface (such as in Promile [45]). 
Often, management decisions will be based on 
information retrieved from community members. 
Administrators mo dify the configuration of community 
members (also known as ‘target nodes’) by sending 
Configuration Messages (CMs) containing 
management instructions. The messages sent from a 
target node to an administrator are referred to as 
‘Notification Messages (NMs)’, these messages can 
contain state information and event notifications. The 
format of the data contained in both CMs and NMs is 
not specified by the middleware; the designer of the 
programmable network is responsible for defining the 
format of the configurations and event notifications. 
The configuration messages sent to programmable 
network nodes may, for example, be formatted in XML 
[2] according to a Schema [3]; alternatively, the 
management instructions could be embedded in an 
executable program known as a delegate [4] (this 
management paradigm is similar to that presented in 
[5]). 
 
Since the middleware is not aware of the data 
contained in CM and NMs, it cannot analyse or process 
the management instructions – that functionality must 
be provided by the user of the middleware. Model 
checking and consistency checking should be 
incorporated into the software that uses the 
middleware. A consistency checking and/or a model-
checking module could be built into the graphical 
interface to the administrator software. Consistency 
checking could benefit from work done on the Xlinkit 
project [6], model checking could benefit from work 
done in the SPIN project [7]. 
 
The configuration of community nodes can be initiated 
by either an administrator or a target node, these 
paradigms are respectively termed ‘Administrator 
Initiated Management’ (AIM) and ‘Target Initiated 
Management’ (TIM). The middleware should support 
both of these paradigms. Examples both AIM and TIM 
are outlined below. 
 
An example that provides a rationale for an  AIM, 
consider an Internet Service Provider (ISP) who owns a 
network connected to the Internet by the ISP's own 
programmable network router through a non-
proprietary link provided by British Telecom (BT). 
When the network was first constructed, BT charged a 
fixed monthly rate for unlimited bandwidth over the 
link to the Internet; however, BT has since changed 
their charging strategy in an attempt to reduce internal 
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congestion. The new charging strategy is such that if 
the outbound bandwidth usage exceeds 100Mbps, the 
monthly charge will be quadrupled. The ISP cannot 
afford to pay the extra charges, so decides to configure 
the programmable network router to ensure the (burst) 
bandwidth usage remains under the limit. The 
configuration begins with a human using a graphical 
interface to the administrator. The administrator sends 
a CM to the programmable network router instructing 
that a ‘shaper’ is used to ensure that that no more than 
100Mbps are sent across the BT link. The 
programmable network router receives the CM and 
successfully processes it and commits the changes. The 
router then sends a NM to the administrator indicating 
that the configuration was a success. Once the 
administrator receives the NM, functionality provided 
by the developers of the programmable network 
graphical interface notify the human that the task was 
completed successfully. 
 
The main role of TIM is to allow the community to be 
managed in an event driven manner. For a usage 
example of TIM, consider an extension to the scenario 
described in the previous example. If the 
programmable network router is configured to notify a 
community administrator if a link failure occurs, the 
AIM paradigm is not appropriate because an 
administrator would have to continuously poll the 
router to see if any problems have occurred. TIM 
allows target nodes to initiate communications with 
administrators; this paradigm is better for event driven 
management than AIM. The programmable network 
router, once configured, will monitor the state of the 
link (the way in which this is done is beyond the scope 
of this paper); if the link fails, the router initiates 
communications by sending an NM to an 
administrator. The way in which the administrator 
reacts to this event notification message is defined by 
the designer of the programmable network 
management system; in this example, the administrator 
is programmed to notify a human of the failure through 
the graphical interface. It should be noted that, like in 
this example, it is not a requirement that messages 
must be acknowledged on reception. 
 
Both of the above examples omit details of node 
discovery. In AIM, administrators must be able to 
discover target nodes; TIM requires that community 
members can locate administrators. Location discovery 
is discussed in the later in this section. 

2.2 Configuration delivery 
Any community member can become an administrator 
at any time; therefore, in order for a community to be 
effectively managed, it must be possible for 
communication to take place between any two 
community members. As described in the previous 
subsection, communication is done using messages. In 
order for the middleware to be usable in heterogeneous 
programmable networks, the messages should be 
portable. This subsection describes the requirements 
relating to the delivery of these messages. The reader 

should note that although the term ‘message’ is used to 
describe the how data is transferred between nodes; the 
middleware may not be based on message oriented 
middleware concepts. The way in which data is 
transferred between nodes will be addressed in the 
design phase of this project. No assumptions have been 
made about the middleware’s architecture; it may be 
based on message-oriented middleware such as JMS 
[8] and DyNet [9], mobile agent middleware such as 
Telescript [10] and Aglets [11], object oriented 
middleware such as CORBA [12] and RMI [13], or 
some other technology. 
 
In this subsection, we first outline the requirements 
relating to two message routing models and then go on 
to discuss community membership and quality of 
service issues. 
 

2.2.1 Point to point delivery 

In order for an administrator to use the middleware to 
manage community members, the middleware must 
provide a delivery mechanism. The middleware must 
be able to route a message to the appropriate place so 
the destination must be embedded in the message. 
Since the sender of a message will often require a reply 
to be sent, the message source should also be included 
in the message. Clearly, every community member 
must have a unique identifier. It cannot be guaranteed 
that the IP address of every community member unique 
(the reasons for this are given in the ‘network 
structure’ subsection) so they should not be used alone 
to identify nodes, a better solution is to use character 
strings to differentiate between nodes. 
 
The programmable network’s designer should be able 
to assume that sent messages will reach the intended 
destination (this is discussed further in the ‘fault 
tolerance’ section). If it is required that the receiver is 
to notify the sending that a message has been received, 
the functionality must be provided by the 
programmable network management software. 
Messages should also comply with some structure 
definition so that it is possible to discover when invalid 
messages are received. If this happens, an error 
notification should be returned to the sender that sent 
the invalid message. 
 
The middleware should support the delivery of 
messages to one, many or all of the nodes in the 
community. The delivery paradigms are respectively 
termed unicast, multicast and broadcast. Most multicast 
protocols (including the IP multicast protocol [14] 
supported in most ‘off the shelf’ routers) take the view 
that a small number of nodes will send multicast 
messages; however the management middleware 
requires that any community member can send 
multicast messages; this is termed as many-to-many 
multicast. Below are examples of how multicast and 
broadcast can be used in a programmable network 
system. 
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Consider a corporate network consisting of one 
thousand routers, of which one hundred routers are also 
connected to external non-proprietary networks; ‘edge 
router’ is the term used to describe this kind of router. 
Due to a public security announcement, the company 
decides to disallow all FTP [15] connections 
originating from outside the corporate network. This 
can be done by (the administrator) constructing a 
multicast message – addressed to all of the edge routers 
– which installs the appropriate ‘dropper’ rule. 
 
To understand the purpose of broadcast messages, once 
again consider the corporate network described in the 
above scenario. A module vendor has significantly 
optimised a programmable network module and 
distributed a patch to its customers. The network owner 
decides that all of the routers in the network are to be 
updated with this patch. By using a broadcast message, 
an administrator can send a single configuration 
message to every community member. Obviously, this 
is far more straightforward than specifying the 
addresses of all nodes (the discovery of all the nodes 
may be a difficult task in itself). 
 
It is worth being aware that the tasks above could be 
carried out by administrator sequentially updating each 
node individually with unicast messages; however, the 
multicast technique is far more efficient than multiple 
unicasts. If the administrator performs all of the 
updates simultaneously, it is highly likely that it will 
take significantly longer than the multicast method: the 
multicast message need only send a single message, 
whereas the concurrent method sends a message to 
each and every target node. Since it is unlikely that 
there will be completely unlimited bandwidth, it will 
take longer to deliver the configurations to every node 
using multicasts because of the increased bandwidth 
demand. 
 
It is likely that the programmable network will require 
that nodes are grouped according to their functionality. 
Since the functionality of community members is not 
in the scope of the middleware, there is no need for it 
to provide grouping capability at this level. It is worth 
noting that the middleware’s multicast and publish-
subscribe (discussed in the next subsection) 
mechanisms can be used to send messages to all the 
nodes in - what the application may consider to be - a  
group. 

2.2.2 Publish-subscribe delivery 

The middleware should be capable of publish-
subscribe message delivery. In this paradigm, messages 
are delivered to only those nodes that explicitly express 
an interest in receiving notifications. A node registers 
interest by subscribing to a ‘topic’. To send a message 
to all community members that are subscribed to a 
topic, messages are ‘published’ to that particular topic. 
 
Compared to multicast, far less knowledge of the 
community is required by the administrator in the 
publish-subscribe model. Depending on the 

programmable network, this may be an advantage or a 
disadvantage. On the positive side: by delivering 
messages to nodes that have registered interest in a 
topic, the administrator does not have to be aware of 
the receiving node’s existence, and hence the addresses 
of all the locations to which a multicast message is to 
be sent. It should be noted that in order to subscribe to 
a topic, nodes must be capable of discovering the 
available topics; this will be addressed in the design 
phase of this project. On the negative side: unlike the 
multicast model, an administrator using the publish-
subscribe model cannot be sure that a message will be 
received by any specific nodes.  
 
As an example of how publish-subscribe could be used 
in a programmable network, consider the multicast 
example given in the previous subsection: in order to 
send updates to all of the edge routers, an administrator 
must have previously discovered the locations of all 
nodes which comply with the ‘edge router’ definition. 
In the publish-subscribe mo del, this foreknowledge is 
not necessary. Providing that all of the edge routers 
have registered an interest in the topic ‘edge router 
updates’ (for example), to configure all target nodes 
the administrator need only publish a message to the 
given topic. 

2.2.3 Community membership 

It is not realistic to make the assumption that the 
community membership is static. Nodes may join and 
leave a community for many different reasons, all of 
which are due to either faults or decisions made by the 
programmable network management system’s 
designer. In a programmable network, nodes may be 
added to the community when new routers are installed 
or removed when there are redundant or faulty routers. 
The community membership is dynamic in that the 
middleware must allow nodes to join and leave the 
network at any time. When a node joins or leaves, the 
community membership is said to have changed. The 
middleware cannot make any assumptions regarding 
the frequency at which the community membership 
changes; therefore, the middleware must be capable of 
functioning correctly for a range of frequencies from 
occasional to frequent community membership 
changes. 
 
In order for a node to join the community, it must be 
running a middleware which both complies with the 
requirements set out in this paper and is compatible 
with the middleware running in the community it 
wishes to join. Compatibility problems may arise due 
differing designs derived from the requirements 
(outlined in this paper) or because the middleware 
implementations are at differing points in the software 
lifecycle (i.e. they have incompatible version 
numbers). 
 
Once a node joins a community, it may be the case that 
– depending on the design - some configuration has to 
be performed on the joining node’s middleware. For 
example, if a node has to rejoin the community after a 
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failure, the previous settings should be applied. This 
configuration should be autonomous and transparent to 
the developer of the programmable network. However, 
since the middleware is not aware of the programmable 
network’s functionality, it cannot be responsible for 
automatically performing programmable network 
specific configuration when a node joins a community. 
If this behaviour is required, the node configuration 
must be outlined by the user of the middleware. 

2.2.4 Quality of service 

Since the middleware is likely to be used to manage 
live systems, messages must be delivered with high 
quality-of-service: the time in which a message is 
delivered should be as low as possible. A significant 
delay between the sending and receiving of a message 
may be unacceptable. For example, if a node is 
checked to see if it is alive (a ‘ping’ message), the node 
will be considered to have failed if it does not respond 
in a reasonable amount of time. Since few systems 
require that configuration updates must meet hard real-
time deadlines, the middleware will not guarantee that 
deadlines can be met. 
 
As previously discussed, no assumptions can be made 
about the size of a message. Since the size of a 
message and the speed of the connections between 
community members are the main factors which affect 
the time required to deliver a message, when the speed 
of the connections between community members is 
low, it may take a long time to send a large message. If 
the middleware does not allow the nodes to send and 
receive multiple messages at the same time, the 
delivery of the large message must complete before 
any more (probably smaller) management message can 
be sent, thus adversely affecting the community’s 
quality-of-service. 

2.2.5 Location discovery 

As previously discussed, the management of a 
community relies on the communications between 
community members. In the AIM paradigm, 
administrators must be capable of locating community 
members that possess certain properties; for example, a 
programmable network router running on the Linux 
[39] platform. The TIM paradigm (discussed in the 
‘management’ subsection) requires that community 
members can locate administrators; for example, a 
programmable network router may have to send a link 
failure notification to an administrator which can react 
to this event. Clearly, there is a need for a mechanism 
which can, given some properties, return the unique 
identifier of nodes that exhibits them. 
 
It may be the case that an administrator has a fixed 
location, however the middleware cannot assume this. 
For example, it is not unlikely that a corporate network 
administrator - which includes a graphical user 
interface – will be run on various community members 
depending on the location of the human network 
manager. Since it is the community members that have 
identifiers and not the administrator processes, it is not 

possible to send messages to administrators if the 
identifier of the host community member is not known. 
 
Services such as JNDI [16], JINI [17] and LDAP [18] 
provide functionality that is useful for the discovery of 
objects’ locations; however, these mechanisms would 
have to be extended to provide all of the required 
functionality for the community member discovery 
outlined in this subsection.  

2.3 Network architecture 
The middleware should allow the community to be 
heterogeneous: it should be possible to configure 
software, written in various languages, residing on a 
number of different operating systems. Cross-platform 
configuration should be transparent to the user of the 
middleware. If it is required that the programmable 
network is capable of discovering information about 
the platform, the functionality would have to be 
incorporated by the programmable network’s designer. 
In some programmable network architectures, platform 
based configurations may be necessary as the modules 
that implement functionality are implementation 
specific. 
 
The middleware should run over both proprietary and 
non-proprietary networks and be capable of crossing 
administrative domain boundaries. The middleware 
will be built on Internet Protocol (IP) [19] because this 
network protocol is widely used and mature in its 
development. The middleware must function correctly 
on asymmetrical networks, and when the data routes 
between community members is unreliable. If the 
community is deployed over a non-proprietary 
network, it cannot be guaranteed that community 
members are not separated by third-party hardware 
(such as routers). Care should be taken to ensure that 
these intermediate routers are not able to 
modify/corrupt en-route data. 
 
Networks may be configured (either manually by a 
human administrator or automatically by some routing 
protocol such as OSPF [20] and BGP [21) such that the 
route that an IP packet takes is not the quickest route. 
Depending on the design of the middleware, this 
inefficiency may mean that a community consisting of 
a large number of nodes cannot provide an acceptable 
quality-of-service. The design phase of this project 
should address this issue. 
 
Multiple nodes in a community may have the same IP 
address. There are three reasons why this could be the 
case: there may be multiple community members 
resident on a network interface; multiple connections 
connect to the community through a tunnel (for 
examp le SOCKS [22] or a NAT [23] firewall); and 
also because, when the community spans private 
networks, it cannot be guaranteed that the address 
ranges do not interfere (for example, multiple private 
networks may use the IP addresses reserved for use in 
private networks by The Internet Corporation for 
Assigned Names and Numbers [24]). The latter is 
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likely to occur when the programmable network 
crosses management domain boundaries. 

2.4 Scalability 
The middleware must be scaleable in that the quality-
of-service in the community should be acceptable 
when the community membership ranges from few, to 
many nodes. The number of nodes that the middleware 
can configure should be significantly larger than that 
which a human systems administrator could configure 
manually in a reasonable amount of time.  
 
There are some situations where it is viable for a 
system administrator to manually configure a 
community. For example, a medium sized Internet 
Service Provider offering a ‘dial-up’ service will 
generally own a small number of routers which are 
configured by hand. When a community consists of a 
large number of nodes, it is no longer feasible to use 
the manual management approach. This is certainly the 
case for a service provider that offers television, 
telecommunications and broadband Internet access. 
Companies such as such as NTL [25], Telewest [26] 
and British Telecom [27] (who provide cable TV and 
Internet) have networks that consist of thousands of 
routers. It is therefore realistic to aim for a middleware 
scalability of up to 10000 nodes. 

2.5 Transactions 
The configuration of a number of community members 
may have to be performed with transactional 
properties. There are four transactional properties: 
atomicity, consistency, isolation and durability; these 
are known as the ACID properties [28]. The atomic 
property ensures that a sequence of instructions has an 
“all-or-nothing” property. If faults occur, the system 
can role back to a previous “healthy” state. The 
preservation of consistency prevents the system being 
in an undesirable state once the transaction is complete; 
for example, once a node has been configured, it is 
possible to configure it again. Isolation prevents 
interference between transactions; simultaneous access 
to data by multiple administrators may cause 
inconsistencies. Durability ensures that once an 
instruction has been committed, changes are not lost; 
for example, assuming nodes recover after failure, a 
node that fails after a transaction has completed does 
not revert to a pre-transactional state on recovery. 
 
Since the community membership is dynamic, it cannot 
be assumed that a community member will not leave 
during a transaction; therefore a mechanism will be 
provided which will allow a transaction to complete 
successfully even if a community member leaves mid-
transaction. Below is an example of the use of 
transactions in the management of a programmable 
network. 
 
If a number of ‘diffserv’ [29] capable programmable 
network routers need to be configured so that some 
classifications of data are forwarded along a particular 

route, failure to update all of the nodes is likely to 
result in undesired routing. This may have serious 
repercussions if the misrouted data is mission critical. 
It is possible to avoid such situations if the 
configuration is done with transactional properties: 
either the entire job is done or no changes are made to 
the target community node’s configuration. 

2.6 Summary 
This section has specified the fundamental mechanisms 
that the middleware must support for it to be used to 
manage a community of programmable network 
routers, and hence the programmable network itself. 
Management is the process whereby nodes are 
configured by administrators by sending messages over 
the network that interconnects them. The middleware 
should make it possible for a large number of 
programmable network routers to be managed. The 
network management could be autonomous or done by 
a human administrator who interacts with some 
(perhaps graphical) user interface. The middleware 
should support both administrator initiated 
configuration and target initiated configuration; this 
allows the programmable network to be configured in a 
proactive and reactive manner. The middleware is not 
required to understand the configuration messages it 
delivers, this means that consistency and model 
checking – if required by the programmable network – 
must be incorporated into the programmable 
networking software that uses the middleware. 
 
For a programmable network to be effectively 
managed, it must be possible for all of the nodes in a 
community to communicate with all the other nodes. 
There must be some mechanism which allows 
community members to discover other nodes. The 
community is dynamic in that nodes can join and leave 
at any time; the location of community members and 
administrators is unlikely to be static. There are four 
delivery paradigms that must be supported: unicast, 
multicast, broadcast and publish-subscribe. For each of 
these paradigms, the middleware should allow the user 
to assume that once sent, a message will reach its 
destination. The delivery of messages must be done 
with a high quality of service, but real-time deadlines 
will not be met. 
 
The middleware should run over Internet Protocol and 
be capable of configuring a heterogeneous network 
which spans public networks, private networks and 
administrative domains. It should be possible to 
differentiate between all of the community members, 
even if multiple nodes share the a common IP address. 

3 Security 
There are three aspects of security which strongly 
relate to the middleware of a programmable network: 
access control, authentication and privacy. In this 
section, each of these is discussed. Although this 
section does not cover the details of ‘denial of service’ 
or ‘replay’ attacks, the middleware should attempt to 
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prevent them; this should be addressed at the design 
phase. 

3.1 Access control 
Access control is the term given to a mechanism that 
can restrict access to functionality based on the actor 
requesting its use. There are two types of access 
control relevant to programmable networks built using 
the middleware proposed in this paper: community 
membership control and functionality control. This 
subsection addresses both models in turn. 
 
Community membership control is the mechanism 
which allows only a certain set of nodes to become a 
community member. For reasons previously discussed, 
access control cannot be based on IP addresses; 
therefore digital certificates [30] may be used instead. 
Every community member must share a common 
access control policy: a node which is  denied access to 
the community at one access point should not be 
granted access by another. However, it cannot be 
guaranteed that a node that is granted access at one 
point is not denied access at another; the reasons for 
this are outlined in the fault tolerance section. An 
example of how a community access control 
mechanism could work in a programmable network 
system is described below. 
 
The owner of a network constructed using 
programmable network routers can be managed by a 
publicly available management tool which incorporates 
a graphical user interface. In order to prevent 
unauthorised nodes form accessing community 
members through the middleware, the community 
membership access control mechanism is used. The 
community is configured such that only nodes  that 
possess particular digital certificate may join the 
community; a digital certificate must have previously 
been issued by some other mechanism. These access 
control mechanisms could be based on the 
functionality provided by the Public Key Infrastructure 
[35]. 
 
Since the middleware is a foundation onto which 
programmable networks are built upon, the middleware 
is not aware of the programmable network’s 
functionality. This means that the middleware cannot 
control the access to the functionality of a community. 
Access to the programmable network’s functionality is, 
if necessary, restricted by mechanisms provided by the 
programmable network’s designer. The middleware 
need only provide the transport mechanisms for these 
access control policies. The designer of the 
programmable network should bear in mind that if per-
node access policies are used, some security policies 
might be violated due to transitive access rights caused 
by functionality proxies. The below example shows 
what functionality access controls may be put in place 
in a programmable network. In a community consisting 
of programmable network routers and administrators, it 
is likely that only a limited number of nodes are 
allowed to install dropping mechanisms, whereas all 

administrators - providing that they do not reside on 
routers - may retrieve information about what dropping 
policies are in place. 

3.2 Authentication 
Authentication is a process that can be used to 
determine if data originated from a particular location 
and whether or not the data has been modified since it 
has been ‘signed’. Authentication is particularly useful 
(and popular) when communications are done over 
non-proprietary network, where there is possibility that 
message source may be spoofed or the data contained 
in a message may be modified in transit. If it is not 
possible to determine where messages originate, the 
access control mechanisms may be circumvented. For 
example, a rogue administrator may try to access 
community members by sending messages that claim 
to be from a different source; this type of attack is 
known as spoofing. It is possible to prevent this kind of 
attack by using authentication mechanisms. The 
receiver of an authenticated message can be sure that 
the message has not been modified and also its source. 
This means that messages cannot be captured and 
modified in transit. 
 
The middleware should provide an authentication 
mechanism that can both digitally sign and verify 
messages. The designer of the programmable network 
is responsible for providing the functionality which 
reacts to a message failing the verification process (i.e. 
it is not authentic). It should be noted that it is not a 
good idea to authenticate based on IP address; the two 
reasons for this are that IP addresses can be spoofed (as 
described in [31]) and because there can be duplicate 
IP addresses (as discussed in the ‘network architecture’ 
subsection). 

3.3 Privacy 
When it is necessary for the contents of a message to 
remain secret, encryption can be used to maintain a 
message’s privacy. This paper assumes the term 
‘privacy’ to mean that only the intended recipient of a 
message is able to read it. If messages are routed 
through intermediate community members, or if an 
eavesdropper sniffs a channel (as described in [32]), 
the only information that is available is the source and 
destination of a message, this means that it may not be 
possible to use transport level encryption mechanisms, 
such as SSL [33] and TLS [34], to guarantee privacy in 
the middleware. Most systems (including SSL, the 
industry standard encryption model) that are able to 
maintain privacy when transferring messages across a 
network assume that, to maintain privacy, it is not 
necessary to encrypt the source and destination of the 
data transfer; this project also assumes this. 
 
Of all the security mechanisms discussed in this paper, 
privacy seems to be the least useful in programmable 
network management. However, privacy should be 
incorporated into the middleware as there are some 
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organisations who may require that the configuration 
of the programmable network must remain a secret.  

3.4 Summary 
In this section, the security mechanisms required by the 
middleware are discussed. It is shown that community 
membership, and hence the ability to manage a 
programmable network,  is only be available to 
authorized parties. Since the middleware is not aware 
of the programmable network’s functionality, it can not 
be controlled. The middleware provides authentication 
mechanisms to enable the programmable network 
router to determine the source of a management 
instruction and to ensure that the message has not been 
modified in transit. The middleware does not include 
functionality which is triggered by the occurrence of a 
message that cannot be authenticated; the actions must 
be defined by the programmable network software. In 
addition to access control and authentication, the 
middleware must provide privacy mechanisms which 
allow messages to remain secret when transmitted. The 
privacy mechanisms should prevent both packet 
sniffers and message sniffers (i.e. rogue community 
members) from compromising the privacy of 
transmitted data. Many, of the issues outlined in this 
sections can be addressed by the Public Key 
Infrastructure [35]; however, decisions regarding the 
implementation of the security mechanis ms will should 
be addressed in the design phase of this project. 

4 Fault Tolerance 
Fault tolerance is the process whereby a system can 
continue to behave normally even when some error 
occurs. The laws of probability are such that: as the 
number of nodes in the community increases, so too 
does the probability that a failure will occur within the 
communities [36]. Since one of the foci of this project 
is to create a scalable middleware, fault tolerance 
issues must be addressed to ensure that the middleware 
functions correctly even when unexpected events 
occur, thus maintaining a high availability of the 
management mechanisms. The occurrence of faults 
will often result in event notifications being generated. 
Fault notification messages should indicate facts about 
why an operation failed but make no attempt to state 
why a failure occurred. The middleware is not 
concerned with the availability and correct functioning 
of the programmable network routers; rather, it is only 
concerned with providing fault tolerance for the 
management mechanisms. 
 
In this section, the fault tolerance issues relating to 
security, router configuration failure, community 
member failures and dependency failures are 
discussed. 

4.1 Security 
If a failure occurs in a security mechanism, it may not 
be possible to configure the community in the normal 
way. There are three ways a security mechanism failure 

can affect the access control mechanisms of the 
management middleware: an administrator may be 
granted access it should not have; an administrator may 
be denied access it should have; or the fault does not 
affect the security of the programmable network. 
 
It is a fair assumption that, if access control policies are 
not available (or invalid), administrators should be 
denied access to functionality rather than be allowed 
access. This means that the entire community will 
remain secure, even when serious faults occur. If 
access is denied due to a control mechanism fault, a 
notification message should be sent to the 
administrator who requested the operation. The 
notification should, rather than stating that there is a 
fault with the access control mechanism, state that 
access is denied. This is because it cannot be 
guaranteed that that the middleware will be aware of 
the fault. 
 
If a failure occurs in the authentication mechanisms, it 
may not be possible to authenticate or the messages 
that are received. As with the access control 
mechanism failure: a node should not notify the 
sending process that the authentication has failed, not 
that the authentication mechanism has failed; the action 
taken in response to this should be defined by the 
designer of the programmable network. 
 
Failure in the privacy mechanisms should not result in 
the privacy of a message not being maintained. If it is 
not possible for secure communalisations to take place 
between community members and the distribution 
requires it, the middleware should notify the software 
using it that the requested functionality is not available. 
The action taken in response to this should be defined 
by the designer of the programmable network. 

4.2. Router Configuration failure 
As previously discussed, the middleware must be 
capable of managing programmable networks that 
reside on large public networks such as the Internet 
where it is likely that non-proprietary network 
hardware (i.e. routers) separates community members. 
The middleware should be able tolerate both third party 
router failures and third party router configuration 
problems. This subsection outlines both of these fault 
tolerance mechanisms. 
 
In order for a message to be transferred between two 
points, there must be a route between them. In large 
networks, there are usually many routes between any 
two points. If a fault occurs on a router or a link 
between routers, data must be routed in an alternate 
route if it is to reach its destination. The IETF [37] 
have outlined protocols and standards [20, 21, 38] that 
most ‘off the shelf’ level three routers support; this 
enables routers to discover router failure and route data 
accordingly. Since the middleware should be designed 
to work over the Internet, the functionality provided by 
IP routing protocols can be relied on to allow the 
middleware to cope with intermediate router failure. 
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Routers may be configured so that the 
management/configuration data travelling between 
some community members is miss-routed or dropped. 
From the point of the middleware, there is a fault in a 
router’s configuration. If a configuration fault is 
present: data will not be routed around the faulty router 
because the fault is not visible to the network level 
routers. This means that the middleware should be 
capable of tolerating miss-configured routers. There 
are two reasons why consistency and model checking 
can not be used to prevent configuration faults: firstly, 
the configuration of third party routers cannot be 
controlled; secondly, the middleware is not aware of 
the programmable network’s functionality and 
configuration. It has already been stated that the 
community may be distributed over the Internet where 
it is likely that many third party routers will separate 
community nodes, so the middleware should be 
capable of tolerating faults in the configuration of third 
party nodes that separate community members. 

4.3 Community member failure 
There are many ways in which a community node can 
fail. Community member failure is concerned with 
errors occurring in a node which is a part of the 
community; faults caused by router failure are not in 
this scope. It is not possible to identify all possible 
failures in polynomial time, let alone provide a means 
of tolerating them; therefore fault tolerance 
mechanisms should deal with a particular scope of 
failures rather than individual faults. 
 
It is often very difficult to determine the location of an 
error that caused a fault to occur. In a community 
which uses the middleware proposed in this paper, the 
locations at which errors may be present can be 
grouped in to four levels: hardware (lowest level), 
execution environment, middleware and application 
(highest level). If a fault occurs at one of these levels, 
the levels above are also affected. For example, if an 
un-tolerated fault occurs at the execution environment 
level: the middleware and application may be affected; 
however the hardware level will not be affected. Errors 
at any of these levels should affect lower levels in that 
fault tolerant mechanisms do not take effect and 
failures do not occur. Clearly, the middleware cannot 
rectify problems caused by errors at the application 
level, but can tolerate faults at or below the middleware 
level. Hardware faults may result calculations 
generating incorrect or no results due to errors in the 
hardware; these errors includes chip burnouts, power 
outages and transient faults caused by (say) 
electromagnetic interference. Execution environment 
failures are caused by errors in the platform the 
middleware runs on; this includes the operating system 
(such as Linux [39] or Microsoft Windows [40]), the 
run-time environment (such as the Java runtime 
environment [41]) and dependency failures (discussed 
in the next subsection). These errors are due to poorly 
designed systems, incorrectly implemented software or 
erroneous development tools (i.e. the compiler used to 

build the execution environment; for example the 
Borland [42] or GCC complier [43]). In addition to 
errors at lower levels, failures at the application and the 
middleware level can be caused by erroneous 
development tools, incorrect configuration and 
incorrect. 
 
The middleware may only be capable of detecting 
failures at, and below, the middleware level. This 
project is not concerned with tolerating faults within 
community members; rather, it is more concerned with 
enabling the community to cope with the complete 
failure of one or more community members. For this 
reason, a community member will be considered to 
have failed if the middleware (either directly or 
indirectly) detects any kind of error at a node’s 
middleware, execution environment or hardware level. 
The result of this is that faults will result in a 
community member becoming unavailable. 
 
This project assumes that if a node fails, it will 
eventually recover. To prevent malicious or 
malfunctioning nodes from ejecting other community 
members, a node must leave the community to 
explicitly requesting membership termination. Since 
few computing systems are able to complete the 
recovery procedure without interaction with a human 
or external system, the middleware should be capable 
of notifying the appropriate administrator that a fault 
has occurred. However, the middleware will not 
require that the user of the middleware provides a 
mechanism to receive or act on the failure 
notifications. Node failure is discovered by other 
community members by either failing to send it a 
message or by realising that it is not responding to 
heartbeat messages (that is if it is decided during 
design phase of this project that heartbeat and ping 
messages exist in the middleware). 
 
In the section that outlines the fundamental 
mechanisms the middleware must possess it is stated 
that a user can assume a message is delivered once it is 
sent. If the destination node has failed, the message 
must remain in the community until it the node 
recovers; however, if the node does not recover in a 
reasonable time, the sending node should be notified 
that the message could not be delivered. 

4.4 Dependency failures 
There are very few programmable networks that do not 
depend on functionality provided by external services. 
For example, programmable networks based on the 
CORBA [12] middleware depends on the availability 
of Object Resource Brokers (ORBs); programmable 
networks based on JMS [8] are dependent on the JMS 
server. If a systems dependencies are not available, is 
unlikely that the programmable network will operate 
correctly (if at all). The middleware must not have a 
single point of failure, and so will not be based on 
unreliable dependencies. 
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Thanks to the highly active fault tolerance research 
community, there is a high level of fault tolerance in 
most dependencies. However, it seems that many of 
these sophisticated fault tolerant systems depend on the 
availability and correctness of a very small number of 
Domain Name System [44] (DNS) servers. The 
middleware should, if possible, mot rely on 
dependencies such as these. 

4.5 Summary 
This section has presented the fault tolerance 
mechanisms that are required in the middleware. Fault 
tolerance is the process whereby the occurrence of 
errors in the community does not result in 
compromised security. The middleware is not 
concerned with the availability and correct functioning 
of the programmable network routers; rather, it is only 
concerned with providing fault tolerance for the 
management mechanisms. It is important to realise that 
consistency and model checking can not be used by the 
middleware to prevent errors occurring, therefore the 
faults must tolerated. 
 
The middleware should guarantee that, even when 
faults occur, only authorised nodes are community 
members. The failure of the authentication or privacy 
mechanisms should not result in security breaches. In 
addition to the middleware mechanism failures, errors 
that exist in third party systems, particularly routers 
and third party services (dependencies), could 
adversely affect functionality of the management 
middleware. The middleware fault tolerance 
mechanisms should try to ensure this does not happen. 
If it is not possible to tolerate a fault, the middleware 
should be able to notify some external system (for 
example a human operator) of the problems. 

5 Usability 
It is unfortunate that many of the popular middleware 
designs seem to have overlooked usability issues; this 
project does not intend to follow suit. There are three 
main areas where usability is important: installation of 
the middleware, configuration of the middleware and 
also how easy it is to use the middleware.  
 
At the time of installation, the systems on which a 
middleware is dependent must also be installed. Most 
software distributions seem to include dependencies in 
the package; however, some do not (most open source 
software requires the system administrator to acquire, 
install and configure dependencies before the install 
can be done). The middleware being proposed in this 
document should, if possible, provide all of the 
dependencies above the network stack. 
 
The complexity of many middleware designs 
sometimes results in a middleware which is difficult to 
configure. It is a goal of this project to produce a 
middleware that is easy to configure. If possible, the 
configuration of the middleware should be totally 
automated. 

 
The middleware’s Application Program Interface (API) 
should be clear and straightforward to use. The user of 
the middleware should not be required to learn how of 
the middleware works, rather, only the way in which 
the functionality is used needs to be understood. Fault 
tolerance mechanisms should be completely 
transparent to the programmer; transactions and 
security mechanisms should not. 

6 Related work 
There are many programmable network projects that 
have roots in either Active Networks [52] or OpenSig 
[48] projects. Currently, most of the work in the 
programmable router field seems to focus on 
application level active networking [53]. A good 
overview of all areas of programmable network 
paradigms is given in [54], and many of the well 
known research projects in this area are compared in 
[55]. More recently, a number of new projects, 
including Promile [45], Click [46] and Android [47], 
have focused on discrete active service programmable 
networks. 
 
To the knowledge of the author, this is a the only 
research project concerned with the management of a 
large heterogeneous programmable network. However, 
research groups at Sussex university [56], Lancaster 
University [57], Sydney University [58], Imperial 
College [59], University College London [60] and 
BTExact [1] seem to be moving in a similar direction. 
In addition to work done in the field of programmable 
networks, this project may also benefit from work done 
in the area of management of overlay networks such as 
MBone [61] and ABone [62]. 
 
There several relevant conferences that publish work 
relating to this project; these include OpenArch [49], 
IWAN [50], Middleware [51] and OpenSig [48]. 

7 Conclusion and Future Work 
This paper has stated the requirements to which the 
middleware must conform together with the rationale 
behind each requirement. There are many 
programmable network research projects, but the vast 
majority focus on the software architecture rather on 
management. The projects that are concerned with 
management tend to incorporate the management into 
the programmable network router and are content with 
being capable of only managing a single node. To the 
authors knowledge, this is the only project that is 
concerned with the development of a general purpose 
middleware for the configuration of programmable 
networks consisting of a large number of 
heterogeneous programmable network routers.  
 
Now that the requirements of the middleware have 
been considered and formally documented, our 
attention can be focused on the design of the 
middleware. As indicated in this paper, there are a 
number of issues that must be resolved regarding the 
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architecture of the middleware. One of the key goals of 
the design phase is determining whether or not any 
existing middleware can be used to construct the 
management middleware proposed in this paper. 
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