
Page 1

Requirements of a Middleware for Managing a large
heterogeneous programmable Network

Andrew Hughes
Department of Computing Science

University College London
Gower Street, London, WC1E 6BT

a.hughes@cs.ucl.ac.uk

Abstract‡
Programmable networking is an increasingly popular
area of research in both industry and academia.
Although most programmable network research
projects seem to focus on the router architecture rather
than on issues relating to the management of
programmable networks, there are numerous research
groups (discussed in [55]) that have incorporated
management middleware into the programmable
network router software. However, none seem to be
concerned with the effective management of a large
heterogeneous programmable network. The
requirements of such a middleware are outlined in this
paper. There are a number of fundamental middleware
principals that are addressed in this paper: these
include management paradigms, configuration
delivery, scalability and transactions. Security, fault
tolerance and usability are also discussed; although
these are not essential parts of the middleware, they
must be addressed if the programmable network
management middleware is to be accepted by industry
and adopted by other research projects.

1 Introduction
The Internet started out as a research project, funded by
the Defence Advanced Research Projects Agency,
called ARPANET. The project focused on best-effort
routing mechanisms that were designed and
implemented in the hope that it would still be possible
for military computers to communicate if nuclear war
broke out. Since then, the Internet has been through a
number of evolutionary cycles; it now supports a multi-
billion pound industry that mainly revolves around e-
commerce, media delivery and service provision.
Although the way in which the Internet is used has
drastically changed since its early days, the
fundamental technology has changed very little. For
the vast majority of Internet communications, data is
transmitted in a best-effort manner. Communications
generally have no relationship to business models: data
that generates large revenues is not treated differently
to those that generate little or no revenue. Since the
Internet is becoming more and more congested, e-
businesses are keen to control internal network
congestion and provide services in the most profitable
way possible. The highly restricted functionality of
most ‘off the shelf’ routers does not allow packets to be
routed in a highly customised way defined by the
router’s owner; Internet routing technology needs to be

evolved to cater for the new requirements.
Programmable networking technology is likely to be
accepted by industry as the solution to this problem. By
programming network routers, the process of routing
data can be controlled in a highly flexible and
customisable manner; this allows Internet corporations
to control network congestion according to a business
model.

Programmable networking is a relatively new area of
research, the technology is therefore in its infancy. The
main focus of research in this area seems to be the
software architecture of the programmable network
routers that constitute the programmable network.
There are many approaches to network
programmability, including Active Networks [52] and
OpenSig [48] projects, however all take the view that
the software that controls the routing process can be
modified. This project does not intend to focus on a
particular programmable network paradigm; rather, the
aim is to research a middleware that can be used to
manage a wide range of programmable network
architectures.

According to [63]: middleware is the term usually
given to the software layer that abstracts
communications concepts from the designer of a
distributed application; it is located between the
operating system and the application. The concept of
middleware is not a new: it is the focus of a very active
research area and also has a strong presence in many
modern day software engineering projects. There are
numerous middleware types (some of are discussed
later), all of which have a diverse range of applications.
From the above definition, it is fairly clear that the
process of managing a network consisting of many
programmable routers can benefit from middleware: it
is possible to add functionality without complicating
the design of the system.

Many research groups seem to agree that, due to the
increased complexity of programmable network routers
(with respect to current ‘off the shelf’ routers),
management middleware is required to allow the
efficient and correct configuration of the nodes.
However, programmable network management
middleware is generally not a high research priority. Of
those projects that do approach programmable network
management issues, it is generally accepted that
programmable network routers will be configured
individually rather than in groups. This paper takes the
view that this approach is not acceptable: the

‡ This research was supported by BTExact
Technologies [1]

Page 2

programmable network management middleware
should be scalable.

This project attempts to separate the management
middleware from the programmable router
architecture, thus allowing the middleware to be
deployed into a diverse range of programmable
network architectures and also enabling the
management of a set of programmable routers with
differing software architectures. We refer to this as an
homogenous programmable network. The
programmable routers, the administrators, and nodes
that provide middleware mechanisms are collectively
termed as a ‘community’. We consider a node to be
any location that the middleware can communicate
with: instances of programmable network routers are
nodes whereas network interfaces and computers are
not.

This paper outlines the requirements of a middleware
intended to simplify the task of managing a large
programmable network; the rationales for the
requirements are also presented. It must be noted that
this paper is not a design document: the architecture of
the middleware and details on the implementation of
the mechanisms outlined in this paper will be
addressed in the design phase of this project.

The paper is structured as follows: Section 2 discusses
the fundamental mechanisms required to manage a
community, Section 3 presents arguments in support of
a transactional middleware, Section 4 approaches
security issues, and Section 5 considers the usability
requirements. Related work is presented in Section 6,
conclusions are drawn and future work in outlined in
Section 7.

2 Middleware Fundamentals
In this section, the fundamental mechanisms and
principles of the middleware are discussed. This is
done in five parts. We first discuss ways in which a
community can be managed, and what support there
should be in the middleware for these management
techniques. We then illustrate the issues regarding
communication between community members, and
after that describe how community members discover
the address of other nodes. We outline the support
required from the network and discuss scalability
requirements before finally outlining the four aspects
of transactions.

2.1 Management
Management is the process whereby an administrator
configures a node. The term ‘administrator’ is used to
describe a process that is either performing
management operations or capable of performing
management operations in response to some event. A
node which has performed management operations, but
has since revoked its compliance with the definition of
an administrator, should not be referred to as an
administrator. Similarly, nodes which will perform

operations in the future, but do not yet comply with the
definition, are not considered as administrators. Since
all administrators must comply with the middleware
requirements set out in this paper, administrators are
community members.

The programmable network can be managed in a
number of ways (defined by its designer): it could be
autonomo us (such as in Android [47]) or done by a
human administrator who interacts with some (perhaps
graphical) user interface (such as in Promile [45]).
Often, management decisions will be based on
information retrieved from community members.
Administrators mo dify the configuration of community
members (also known as ‘target nodes’) by sending
Configuration Messages (CMs) containing
management instructions. The messages sent from a
target node to an administrator are referred to as
‘Notification Messages (NMs)’, these messages can
contain state information and event notifications. The
format of the data contained in both CMs and NMs is
not specified by the middleware; the designer of the
programmable network is responsible for defining the
format of the configurations and event notifications.
The configuration messages sent to programmable
network nodes may, for example, be formatted in XML
[2] according to a Schema [3]; alternatively, the
management instructions could be embedded in an
executable program known as a delegate [4] (this
management paradigm is similar to that presented in
[5]).

Since the middleware is not aware of the data
contained in CM and NMs, it cannot analyse or process
the management instructions – that functionality must
be provided by the user of the middleware. Model
checking and consistency checking should be
incorporated into the software that uses the
middleware. A consistency checking and/or a model-
checking module could be built into the graphical
interface to the administrator software. Consistency
checking could benefit from work done on the Xlinkit
project [6], model checking could benefit from work
done in the SPIN project [7].

The configuration of community nodes can be initiated
by either an administrator or a target node, these
paradigms are respectively termed ‘Administrator
Initiated Management’ (AIM) and ‘Target Initiated
Management’ (TIM). The middleware should support
both of these paradigms. Examples both AIM and TIM
are outlined below.

An example that provides a rationale for an AIM,
consider an Internet Service Provider (ISP) who owns a
network connected to the Internet by the ISP's own
programmable network router through a non-
proprietary link provided by British Telecom (BT).
When the network was first constructed, BT charged a
fixed monthly rate for unlimited bandwidth over the
link to the Internet; however, BT has since changed
their charging strategy in an attempt to reduce internal

Page 3

congestion. The new charging strategy is such that if
the outbound bandwidth usage exceeds 100Mbps, the
monthly charge will be quadrupled. The ISP cannot
afford to pay the extra charges, so decides to configure
the programmable network router to ensure the (burst)
bandwidth usage remains under the limit. The
configuration begins with a human using a graphical
interface to the administrator. The administrator sends
a CM to the programmable network router instructing
that a ‘shaper’ is used to ensure that that no more than
100Mbps are sent across the BT link. The
programmable network router receives the CM and
successfully processes it and commits the changes. The
router then sends a NM to the administrator indicating
that the configuration was a success. Once the
administrator receives the NM, functionality provided
by the developers of the programmable network
graphical interface notify the human that the task was
completed successfully.

The main role of TIM is to allow the community to be
managed in an event driven manner. For a usage
example of TIM, consider an extension to the scenario
described in the previous example. If the
programmable network router is configured to notify a
community administrator if a link failure occurs, the
AIM paradigm is not appropriate because an
administrator would have to continuously poll the
router to see if any problems have occurred. TIM
allows target nodes to initiate communications with
administrators; this paradigm is better for event driven
management than AIM. The programmable network
router, once configured, will monitor the state of the
link (the way in which this is done is beyond the scope
of this paper); if the link fails, the router initiates
communications by sending an NM to an
administrator. The way in which the administrator
reacts to this event notification message is defined by
the designer of the programmable network
management system; in this example, the administrator
is programmed to notify a human of the failure through
the graphical interface. It should be noted that, like in
this example, it is not a requirement that messages
must be acknowledged on reception.

Both of the above examples omit details of node
discovery. In AIM, administrators must be able to
discover target nodes; TIM requires that community
members can locate administrators. Location discovery
is discussed in the later in this section.

2.2 Configuration delivery
Any community member can become an administrator
at any time; therefore, in order for a community to be
effectively managed, it must be possible for
communication to take place between any two
community members. As described in the previous
subsection, communication is done using messages. In
order for the middleware to be usable in heterogeneous
programmable networks, the messages should be
portable. This subsection describes the requirements
relating to the delivery of these messages. The reader

should note that although the term ‘message’ is used to
describe the how data is transferred between nodes; the
middleware may not be based on message oriented
middleware concepts. The way in which data is
transferred between nodes will be addressed in the
design phase of this project. No assumptions have been
made about the middleware’s architecture; it may be
based on message-oriented middleware such as JMS
[8] and DyNet [9], mobile agent middleware such as
Telescript [10] and Aglets [11], object oriented
middleware such as CORBA [12] and RMI [13], or
some other technology.

In this subsection, we first outline the requirements
relating to two message routing models and then go on
to discuss community membership and quality of
service issues.

2.2.1 Point to point delivery

In order for an administrator to use the middleware to
manage community members, the middleware must
provide a delivery mechanism. The middleware must
be able to route a message to the appropriate place so
the destination must be embedded in the message.
Since the sender of a message will often require a reply
to be sent, the message source should also be included
in the message. Clearly, every community member
must have a unique identifier. It cannot be guaranteed
that the IP address of every community member unique
(the reasons for this are given in the ‘network
structure’ subsection) so they should not be used alone
to identify nodes, a better solution is to use character
strings to differentiate between nodes.

The programmable network’s designer should be able
to assume that sent messages will reach the intended
destination (this is discussed further in the ‘fault
tolerance’ section). If it is required that the receiver is
to notify the sending that a message has been received,
the functionality must be provided by the
programmable network management software.
Messages should also comply with some structure
definition so that it is possible to discover when invalid
messages are received. If this happens, an error
notification should be returned to the sender that sent
the invalid message.

The middleware should support the delivery of
messages to one, many or all of the nodes in the
community. The delivery paradigms are respectively
termed unicast, multicast and broadcast. Most multicast
protocols (including the IP multicast protocol [14]
supported in most ‘off the shelf’ routers) take the view
that a small number of nodes will send multicast
messages; however the management middleware
requires that any community member can send
multicast messages; this is termed as many-to-many
multicast. Below are examples of how multicast and
broadcast can be used in a programmable network
system.

Page 4

Consider a corporate network consisting of one
thousand routers, of which one hundred routers are also
connected to external non-proprietary networks; ‘edge
router’ is the term used to describe this kind of router.
Due to a public security announcement, the company
decides to disallow all FTP [15] connections
originating from outside the corporate network. This
can be done by (the administrator) constructing a
multicast message – addressed to all of the edge routers
– which installs the appropriate ‘dropper’ rule.

To understand the purpose of broadcast messages, once
again consider the corporate network described in the
above scenario. A module vendor has significantly
optimised a programmable network module and
distributed a patch to its customers. The network owner
decides that all of the routers in the network are to be
updated with this patch. By using a broadcast message,
an administrator can send a single configuration
message to every community member. Obviously, this
is far more straightforward than specifying the
addresses of all nodes (the discovery of all the nodes
may be a difficult task in itself).

It is worth being aware that the tasks above could be
carried out by administrator sequentially updating each
node individually with unicast messages; however, the
multicast technique is far more efficient than multiple
unicasts. If the administrator performs all of the
updates simultaneously, it is highly likely that it will
take significantly longer than the multicast method: the
multicast message need only send a single message,
whereas the concurrent method sends a message to
each and every target node. Since it is unlikely that
there will be completely unlimited bandwidth, it will
take longer to deliver the configurations to every node
using multicasts because of the increased bandwidth
demand.

It is likely that the programmable network will require
that nodes are grouped according to their functionality.
Since the functionality of community members is not
in the scope of the middleware, there is no need for it
to provide grouping capability at this level. It is worth
noting that the middleware’s multicast and publish-
subscribe (discussed in the next subsection)
mechanisms can be used to send messages to all the
nodes in - what the application may consider to be - a
group.

2.2.2 Publish-subscribe delivery

The middleware should be capable of publish-
subscribe message delivery. In this paradigm, messages
are delivered to only those nodes that explicitly express
an interest in receiving notifications. A node registers
interest by subscribing to a ‘topic’. To send a message
to all community members that are subscribed to a
topic, messages are ‘published’ to that particular topic.

Compared to multicast, far less knowledge of the
community is required by the administrator in the
publish-subscribe model. Depending on the

programmable network, this may be an advantage or a
disadvantage. On the positive side: by delivering
messages to nodes that have registered interest in a
topic, the administrator does not have to be aware of
the receiving node’s existence, and hence the addresses
of all the locations to which a multicast message is to
be sent. It should be noted that in order to subscribe to
a topic, nodes must be capable of discovering the
available topics; this will be addressed in the design
phase of this project. On the negative side: unlike the
multicast model, an administrator using the publish-
subscribe model cannot be sure that a message will be
received by any specific nodes.

As an example of how publish-subscribe could be used
in a programmable network, consider the multicast
example given in the previous subsection: in order to
send updates to all of the edge routers, an administrator
must have previously discovered the locations of all
nodes which comply with the ‘edge router’ definition.
In the publish-subscribe mo del, this foreknowledge is
not necessary. Providing that all of the edge routers
have registered an interest in the topic ‘edge router
updates’ (for example), to configure all target nodes
the administrator need only publish a message to the
given topic.

2.2.3 Community membership

It is not realistic to make the assumption that the
community membership is static. Nodes may join and
leave a community for many different reasons, all of
which are due to either faults or decisions made by the
programmable network management system’s
designer. In a programmable network, nodes may be
added to the community when new routers are installed
or removed when there are redundant or faulty routers.
The community membership is dynamic in that the
middleware must allow nodes to join and leave the
network at any time. When a node joins or leaves, the
community membership is said to have changed. The
middleware cannot make any assumptions regarding
the frequency at which the community membership
changes; therefore, the middleware must be capable of
functioning correctly for a range of frequencies from
occasional to frequent community membership
changes.

In order for a node to join the community, it must be
running a middleware which both complies with the
requirements set out in this paper and is compatible
with the middleware running in the community it
wishes to join. Compatibility problems may arise due
differing designs derived from the requirements
(outlined in this paper) or because the middleware
implementations are at differing points in the software
lifecycle (i.e. they have incompatible version
numbers).

Once a node joins a community, it may be the case that
– depending on the design - some configuration has to
be performed on the joining node’s middleware. For
example, if a node has to rejoin the community after a

Page 5

failure, the previous settings should be applied. This
configuration should be autonomous and transparent to
the developer of the programmable network. However,
since the middleware is not aware of the programmable
network’s functionality, it cannot be responsible for
automatically performing programmable network
specific configuration when a node joins a community.
If this behaviour is required, the node configuration
must be outlined by the user of the middleware.

2.2.4 Quality of service

Since the middleware is likely to be used to manage
live systems, messages must be delivered with high
quality-of-service: the time in which a message is
delivered should be as low as possible. A significant
delay between the sending and receiving of a message
may be unacceptable. For example, if a node is
checked to see if it is alive (a ‘ping’ message), the node
will be considered to have failed if it does not respond
in a reasonable amount of time. Since few systems
require that configuration updates must meet hard real-
time deadlines, the middleware will not guarantee that
deadlines can be met.

As previously discussed, no assumptions can be made
about the size of a message. Since the size of a
message and the speed of the connections between
community members are the main factors which affect
the time required to deliver a message, when the speed
of the connections between community members is
low, it may take a long time to send a large message. If
the middleware does not allow the nodes to send and
receive multiple messages at the same time, the
delivery of the large message must complete before
any more (probably smaller) management message can
be sent, thus adversely affecting the community’s
quality-of-service.

2.2.5 Location discovery

As previously discussed, the management of a
community relies on the communications between
community members. In the AIM paradigm,
administrators must be capable of locating community
members that possess certain properties; for example, a
programmable network router running on the Linux
[39] platform. The TIM paradigm (discussed in the
‘management’ subsection) requires that community
members can locate administrators; for example, a
programmable network router may have to send a link
failure notification to an administrator which can react
to this event. Clearly, there is a need for a mechanism
which can, given some properties, return the unique
identifier of nodes that exhibits them.

It may be the case that an administrator has a fixed
location, however the middleware cannot assume this.
For example, it is not unlikely that a corporate network
administrator - which includes a graphical user
interface – will be run on various community members
depending on the location of the human network
manager. Since it is the community members that have
identifiers and not the administrator processes, it is not

possible to send messages to administrators if the
identifier of the host community member is not known.

Services such as JNDI [16], JINI [17] and LDAP [18]
provide functionality that is useful for the discovery of
objects’ locations; however, these mechanisms would
have to be extended to provide all of the required
functionality for the community member discovery
outlined in this subsection.

2.3 Network architecture
The middleware should allow the community to be
heterogeneous: it should be possible to configure
software, written in various languages, residing on a
number of different operating systems. Cross-platform
configuration should be transparent to the user of the
middleware. If it is required that the programmable
network is capable of discovering information about
the platform, the functionality would have to be
incorporated by the programmable network’s designer.
In some programmable network architectures, platform
based configurations may be necessary as the modules
that implement functionality are implementation
specific.

The middleware should run over both proprietary and
non-proprietary networks and be capable of crossing
administrative domain boundaries. The middleware
will be built on Internet Protocol (IP) [19] because this
network protocol is widely used and mature in its
development. The middleware must function correctly
on asymmetrical networks, and when the data routes
between community members is unreliable. If the
community is deployed over a non-proprietary
network, it cannot be guaranteed that community
members are not separated by third-party hardware
(such as routers). Care should be taken to ensure that
these intermediate routers are not able to
modify/corrupt en-route data.

Networks may be configured (either manually by a
human administrator or automatically by some routing
protocol such as OSPF [20] and BGP [21) such that the
route that an IP packet takes is not the quickest route.
Depending on the design of the middleware, this
inefficiency may mean that a community consisting of
a large number of nodes cannot provide an acceptable
quality-of-service. The design phase of this project
should address this issue.

Multiple nodes in a community may have the same IP
address. There are three reasons why this could be the
case: there may be multiple community members
resident on a network interface; multiple connections
connect to the community through a tunnel (for
examp le SOCKS [22] or a NAT [23] firewall); and
also because, when the community spans private
networks, it cannot be guaranteed that the address
ranges do not interfere (for example, multiple private
networks may use the IP addresses reserved for use in
private networks by The Internet Corporation for
Assigned Names and Numbers [24]). The latter is

Page 6

likely to occur when the programmable network
crosses management domain boundaries.

2.4 Scalability
The middleware must be scaleable in that the quality-
of-service in the community should be acceptable
when the community membership ranges from few, to
many nodes. The number of nodes that the middleware
can configure should be significantly larger than that
which a human systems administrator could configure
manually in a reasonable amount of time.

There are some situations where it is viable for a
system administrator to manually configure a
community. For example, a medium sized Internet
Service Provider offering a ‘dial-up’ service will
generally own a small number of routers which are
configured by hand. When a community consists of a
large number of nodes, it is no longer feasible to use
the manual management approach. This is certainly the
case for a service provider that offers television,
telecommunications and broadband Internet access.
Companies such as such as NTL [25], Telewest [26]
and British Telecom [27] (who provide cable TV and
Internet) have networks that consist of thousands of
routers. It is therefore realistic to aim for a middleware
scalability of up to 10000 nodes.

2.5 Transactions
The configuration of a number of community members
may have to be performed with transactional
properties. There are four transactional properties:
atomicity, consistency, isolation and durability; these
are known as the ACID properties [28]. The atomic
property ensures that a sequence of instructions has an
“all-or-nothing” property. If faults occur, the system
can role back to a previous “healthy” state. The
preservation of consistency prevents the system being
in an undesirable state once the transaction is complete;
for example, once a node has been configured, it is
possible to configure it again. Isolation prevents
interference between transactions; simultaneous access
to data by multiple administrators may cause
inconsistencies. Durability ensures that once an
instruction has been committed, changes are not lost;
for example, assuming nodes recover after failure, a
node that fails after a transaction has completed does
not revert to a pre-transactional state on recovery.

Since the community membership is dynamic, it cannot
be assumed that a community member will not leave
during a transaction; therefore a mechanism will be
provided which will allow a transaction to complete
successfully even if a community member leaves mid-
transaction. Below is an example of the use of
transactions in the management of a programmable
network.

If a number of ‘diffserv’ [29] capable programmable
network routers need to be configured so that some
classifications of data are forwarded along a particular

route, failure to update all of the nodes is likely to
result in undesired routing. This may have serious
repercussions if the misrouted data is mission critical.
It is possible to avoid such situations if the
configuration is done with transactional properties:
either the entire job is done or no changes are made to
the target community node’s configuration.

2.6 Summary
This section has specified the fundamental mechanisms
that the middleware must support for it to be used to
manage a community of programmable network
routers, and hence the programmable network itself.
Management is the process whereby nodes are
configured by administrators by sending messages over
the network that interconnects them. The middleware
should make it possible for a large number of
programmable network routers to be managed. The
network management could be autonomous or done by
a human administrator who interacts with some
(perhaps graphical) user interface. The middleware
should support both administrator initiated
configuration and target initiated configuration; this
allows the programmable network to be configured in a
proactive and reactive manner. The middleware is not
required to understand the configuration messages it
delivers, this means that consistency and model
checking – if required by the programmable network –
must be incorporated into the programmable
networking software that uses the middleware.

For a programmable network to be effectively
managed, it must be possible for all of the nodes in a
community to communicate with all the other nodes.
There must be some mechanism which allows
community members to discover other nodes. The
community is dynamic in that nodes can join and leave
at any time; the location of community members and
administrators is unlikely to be static. There are four
delivery paradigms that must be supported: unicast,
multicast, broadcast and publish-subscribe. For each of
these paradigms, the middleware should allow the user
to assume that once sent, a message will reach its
destination. The delivery of messages must be done
with a high quality of service, but real-time deadlines
will not be met.

The middleware should run over Internet Protocol and
be capable of configuring a heterogeneous network
which spans public networks, private networks and
administrative domains. It should be possible to
differentiate between all of the community members,
even if multiple nodes share the a common IP address.

3 Security
There are three aspects of security which strongly
relate to the middleware of a programmable network:
access control, authentication and privacy. In this
section, each of these is discussed. Although this
section does not cover the details of ‘denial of service’
or ‘replay’ attacks, the middleware should attempt to

Page 7

prevent them; this should be addressed at the design
phase.

3.1 Access control
Access control is the term given to a mechanism that
can restrict access to functionality based on the actor
requesting its use. There are two types of access
control relevant to programmable networks built using
the middleware proposed in this paper: community
membership control and functionality control. This
subsection addresses both models in turn.

Community membership control is the mechanism
which allows only a certain set of nodes to become a
community member. For reasons previously discussed,
access control cannot be based on IP addresses;
therefore digital certificates [30] may be used instead.
Every community member must share a common
access control policy: a node which is denied access to
the community at one access point should not be
granted access by another. However, it cannot be
guaranteed that a node that is granted access at one
point is not denied access at another; the reasons for
this are outlined in the fault tolerance section. An
example of how a community access control
mechanism could work in a programmable network
system is described below.

The owner of a network constructed using
programmable network routers can be managed by a
publicly available management tool which incorporates
a graphical user interface. In order to prevent
unauthorised nodes form accessing community
members through the middleware, the community
membership access control mechanism is used. The
community is configured such that only nodes that
possess particular digital certificate may join the
community; a digital certificate must have previously
been issued by some other mechanism. These access
control mechanisms could be based on the
functionality provided by the Public Key Infrastructure
[35].

Since the middleware is a foundation onto which
programmable networks are built upon, the middleware
is not aware of the programmable network’s
functionality. This means that the middleware cannot
control the access to the functionality of a community.
Access to the programmable network’s functionality is,
if necessary, restricted by mechanisms provided by the
programmable network’s designer. The middleware
need only provide the transport mechanisms for these
access control policies. The designer of the
programmable network should bear in mind that if per-
node access policies are used, some security policies
might be violated due to transitive access rights caused
by functionality proxies. The below example shows
what functionality access controls may be put in place
in a programmable network. In a community consisting
of programmable network routers and administrators, it
is likely that only a limited number of nodes are
allowed to install dropping mechanisms, whereas all

administrators - providing that they do not reside on
routers - may retrieve information about what dropping
policies are in place.

3.2 Authentication
Authentication is a process that can be used to
determine if data originated from a particular location
and whether or not the data has been modified since it
has been ‘signed’. Authentication is particularly useful
(and popular) when communications are done over
non-proprietary network, where there is possibility that
message source may be spoofed or the data contained
in a message may be modified in transit. If it is not
possible to determine where messages originate, the
access control mechanisms may be circumvented. For
example, a rogue administrator may try to access
community members by sending messages that claim
to be from a different source; this type of attack is
known as spoofing. It is possible to prevent this kind of
attack by using authentication mechanisms. The
receiver of an authenticated message can be sure that
the message has not been modified and also its source.
This means that messages cannot be captured and
modified in transit.

The middleware should provide an authentication
mechanism that can both digitally sign and verify
messages. The designer of the programmable network
is responsible for providing the functionality which
reacts to a message failing the verification process (i.e.
it is not authentic). It should be noted that it is not a
good idea to authenticate based on IP address; the two
reasons for this are that IP addresses can be spoofed (as
described in [31]) and because there can be duplicate
IP addresses (as discussed in the ‘network architecture’
subsection).

3.3 Privacy
When it is necessary for the contents of a message to
remain secret, encryption can be used to maintain a
message’s privacy. This paper assumes the term
‘privacy’ to mean that only the intended recipient of a
message is able to read it. If messages are routed
through intermediate community members, or if an
eavesdropper sniffs a channel (as described in [32]),
the only information that is available is the source and
destination of a message, this means that it may not be
possible to use transport level encryption mechanisms,
such as SSL [33] and TLS [34], to guarantee privacy in
the middleware. Most systems (including SSL, the
industry standard encryption model) that are able to
maintain privacy when transferring messages across a
network assume that, to maintain privacy, it is not
necessary to encrypt the source and destination of the
data transfer; this project also assumes this.

Of all the security mechanisms discussed in this paper,
privacy seems to be the least useful in programmable
network management. However, privacy should be
incorporated into the middleware as there are some

Page 8

organisations who may require that the configuration
of the programmable network must remain a secret.

3.4 Summary
In this section, the security mechanisms required by the
middleware are discussed. It is shown that community
membership, and hence the ability to manage a
programmable network, is only be available to
authorized parties. Since the middleware is not aware
of the programmable network’s functionality, it can not
be controlled. The middleware provides authentication
mechanisms to enable the programmable network
router to determine the source of a management
instruction and to ensure that the message has not been
modified in transit. The middleware does not include
functionality which is triggered by the occurrence of a
message that cannot be authenticated; the actions must
be defined by the programmable network software. In
addition to access control and authentication, the
middleware must provide privacy mechanisms which
allow messages to remain secret when transmitted. The
privacy mechanisms should prevent both packet
sniffers and message sniffers (i.e. rogue community
members) from compromising the privacy of
transmitted data. Many, of the issues outlined in this
sections can be addressed by the Public Key
Infrastructure [35]; however, decisions regarding the
implementation of the security mechanis ms will should
be addressed in the design phase of this project.

4 Fault Tolerance
Fault tolerance is the process whereby a system can
continue to behave normally even when some error
occurs. The laws of probability are such that: as the
number of nodes in the community increases, so too
does the probability that a failure will occur within the
communities [36]. Since one of the foci of this project
is to create a scalable middleware, fault tolerance
issues must be addressed to ensure that the middleware
functions correctly even when unexpected events
occur, thus maintaining a high availability of the
management mechanisms. The occurrence of faults
will often result in event notifications being generated.
Fault notification messages should indicate facts about
why an operation failed but make no attempt to state
why a failure occurred. The middleware is not
concerned with the availability and correct functioning
of the programmable network routers; rather, it is only
concerned with providing fault tolerance for the
management mechanisms.

In this section, the fault tolerance issues relating to
security, router configuration failure, community
member failures and dependency failures are
discussed.

4.1 Security
If a failure occurs in a security mechanism, it may not
be possible to configure the community in the normal
way. There are three ways a security mechanism failure

can affect the access control mechanisms of the
management middleware: an administrator may be
granted access it should not have; an administrator may
be denied access it should have; or the fault does not
affect the security of the programmable network.

It is a fair assumption that, if access control policies are
not available (or invalid), administrators should be
denied access to functionality rather than be allowed
access. This means that the entire community will
remain secure, even when serious faults occur. If
access is denied due to a control mechanism fault, a
notification message should be sent to the
administrator who requested the operation. The
notification should, rather than stating that there is a
fault with the access control mechanism, state that
access is denied. This is because it cannot be
guaranteed that that the middleware will be aware of
the fault.

If a failure occurs in the authentication mechanisms, it
may not be possible to authenticate or the messages
that are received. As with the access control
mechanism failure: a node should not notify the
sending process that the authentication has failed, not
that the authentication mechanism has failed; the action
taken in response to this should be defined by the
designer of the programmable network.

Failure in the privacy mechanisms should not result in
the privacy of a message not being maintained. If it is
not possible for secure communalisations to take place
between community members and the distribution
requires it, the middleware should notify the software
using it that the requested functionality is not available.
The action taken in response to this should be defined
by the designer of the programmable network.

4.2. Router Configuration failure
As previously discussed, the middleware must be
capable of managing programmable networks that
reside on large public networks such as the Internet
where it is likely that non-proprietary network
hardware (i.e. routers) separates community members.
The middleware should be able tolerate both third party
router failures and third party router configuration
problems. This subsection outlines both of these fault
tolerance mechanisms.

In order for a message to be transferred between two
points, there must be a route between them. In large
networks, there are usually many routes between any
two points. If a fault occurs on a router or a link
between routers, data must be routed in an alternate
route if it is to reach its destination. The IETF [37]
have outlined protocols and standards [20, 21, 38] that
most ‘off the shelf’ level three routers support; this
enables routers to discover router failure and route data
accordingly. Since the middleware should be designed
to work over the Internet, the functionality provided by
IP routing protocols can be relied on to allow the
middleware to cope with intermediate router failure.

Page 9

Routers may be configured so that the
management/configuration data travelling between
some community members is miss-routed or dropped.
From the point of the middleware, there is a fault in a
router’s configuration. If a configuration fault is
present: data will not be routed around the faulty router
because the fault is not visible to the network level
routers. This means that the middleware should be
capable of tolerating miss-configured routers. There
are two reasons why consistency and model checking
can not be used to prevent configuration faults: firstly,
the configuration of third party routers cannot be
controlled; secondly, the middleware is not aware of
the programmable network’s functionality and
configuration. It has already been stated that the
community may be distributed over the Internet where
it is likely that many third party routers will separate
community nodes, so the middleware should be
capable of tolerating faults in the configuration of third
party nodes that separate community members.

4.3 Community member failure
There are many ways in which a community node can
fail. Community member failure is concerned with
errors occurring in a node which is a part of the
community; faults caused by router failure are not in
this scope. It is not possible to identify all possible
failures in polynomial time, let alone provide a means
of tolerating them; therefore fault tolerance
mechanisms should deal with a particular scope of
failures rather than individual faults.

It is often very difficult to determine the location of an
error that caused a fault to occur. In a community
which uses the middleware proposed in this paper, the
locations at which errors may be present can be
grouped in to four levels: hardware (lowest level),
execution environment, middleware and application
(highest level). If a fault occurs at one of these levels,
the levels above are also affected. For example, if an
un-tolerated fault occurs at the execution environment
level: the middleware and application may be affected;
however the hardware level will not be affected. Errors
at any of these levels should affect lower levels in that
fault tolerant mechanisms do not take effect and
failures do not occur. Clearly, the middleware cannot
rectify problems caused by errors at the application
level, but can tolerate faults at or below the middleware
level. Hardware faults may result calculations
generating incorrect or no results due to errors in the
hardware; these errors includes chip burnouts, power
outages and transient faults caused by (say)
electromagnetic interference. Execution environment
failures are caused by errors in the platform the
middleware runs on; this includes the operating system
(such as Linux [39] or Microsoft Windows [40]), the
run-time environment (such as the Java runtime
environment [41]) and dependency failures (discussed
in the next subsection). These errors are due to poorly
designed systems, incorrectly implemented software or
erroneous development tools (i.e. the compiler used to

build the execution environment; for example the
Borland [42] or GCC complier [43]). In addition to
errors at lower levels, failures at the application and the
middleware level can be caused by erroneous
development tools, incorrect configuration and
incorrect.

The middleware may only be capable of detecting
failures at, and below, the middleware level. This
project is not concerned with tolerating faults within
community members; rather, it is more concerned with
enabling the community to cope with the complete
failure of one or more community members. For this
reason, a community member will be considered to
have failed if the middleware (either directly or
indirectly) detects any kind of error at a node’s
middleware, execution environment or hardware level.
The result of this is that faults will result in a
community member becoming unavailable.

This project assumes that if a node fails, it will
eventually recover. To prevent malicious or
malfunctioning nodes from ejecting other community
members, a node must leave the community to
explicitly requesting membership termination. Since
few computing systems are able to complete the
recovery procedure without interaction with a human
or external system, the middleware should be capable
of notifying the appropriate administrator that a fault
has occurred. However, the middleware will not
require that the user of the middleware provides a
mechanism to receive or act on the failure
notifications. Node failure is discovered by other
community members by either failing to send it a
message or by realising that it is not responding to
heartbeat messages (that is if it is decided during
design phase of this project that heartbeat and ping
messages exist in the middleware).

In the section that outlines the fundamental
mechanisms the middleware must possess it is stated
that a user can assume a message is delivered once it is
sent. If the destination node has failed, the message
must remain in the community until it the node
recovers; however, if the node does not recover in a
reasonable time, the sending node should be notified
that the message could not be delivered.

4.4 Dependency failures
There are very few programmable networks that do not
depend on functionality provided by external services.
For example, programmable networks based on the
CORBA [12] middleware depends on the availability
of Object Resource Brokers (ORBs); programmable
networks based on JMS [8] are dependent on the JMS
server. If a systems dependencies are not available, is
unlikely that the programmable network will operate
correctly (if at all). The middleware must not have a
single point of failure, and so will not be based on
unreliable dependencies.

Page 10

Thanks to the highly active fault tolerance research
community, there is a high level of fault tolerance in
most dependencies. However, it seems that many of
these sophisticated fault tolerant systems depend on the
availability and correctness of a very small number of
Domain Name System [44] (DNS) servers. The
middleware should, if possible, mot rely on
dependencies such as these.

4.5 Summary
This section has presented the fault tolerance
mechanisms that are required in the middleware. Fault
tolerance is the process whereby the occurrence of
errors in the community does not result in
compromised security. The middleware is not
concerned with the availability and correct functioning
of the programmable network routers; rather, it is only
concerned with providing fault tolerance for the
management mechanisms. It is important to realise that
consistency and model checking can not be used by the
middleware to prevent errors occurring, therefore the
faults must tolerated.

The middleware should guarantee that, even when
faults occur, only authorised nodes are community
members. The failure of the authentication or privacy
mechanisms should not result in security breaches. In
addition to the middleware mechanism failures, errors
that exist in third party systems, particularly routers
and third party services (dependencies), could
adversely affect functionality of the management
middleware. The middleware fault tolerance
mechanisms should try to ensure this does not happen.
If it is not possible to tolerate a fault, the middleware
should be able to notify some external system (for
example a human operator) of the problems.

5 Usability
It is unfortunate that many of the popular middleware
designs seem to have overlooked usability issues; this
project does not intend to follow suit. There are three
main areas where usability is important: installation of
the middleware, configuration of the middleware and
also how easy it is to use the middleware.

At the time of installation, the systems on which a
middleware is dependent must also be installed. Most
software distributions seem to include dependencies in
the package; however, some do not (most open source
software requires the system administrator to acquire,
install and configure dependencies before the install
can be done). The middleware being proposed in this
document should, if possible, provide all of the
dependencies above the network stack.

The complexity of many middleware designs
sometimes results in a middleware which is difficult to
configure. It is a goal of this project to produce a
middleware that is easy to configure. If possible, the
configuration of the middleware should be totally
automated.

The middleware’s Application Program Interface (API)
should be clear and straightforward to use. The user of
the middleware should not be required to learn how of
the middleware works, rather, only the way in which
the functionality is used needs to be understood. Fault
tolerance mechanisms should be completely
transparent to the programmer; transactions and
security mechanisms should not.

6 Related work
There are many programmable network projects that
have roots in either Active Networks [52] or OpenSig
[48] projects. Currently, most of the work in the
programmable router field seems to focus on
application level active networking [53]. A good
overview of all areas of programmable network
paradigms is given in [54], and many of the well
known research projects in this area are compared in
[55]. More recently, a number of new projects,
including Promile [45], Click [46] and Android [47],
have focused on discrete active service programmable
networks.

To the knowledge of the author, this is a the only
research project concerned with the management of a
large heterogeneous programmable network. However,
research groups at Sussex university [56], Lancaster
University [57], Sydney University [58], Imperial
College [59], University College London [60] and
BTExact [1] seem to be moving in a similar direction.
In addition to work done in the field of programmable
networks, this project may also benefit from work done
in the area of management of overlay networks such as
MBone [61] and ABone [62].

There several relevant conferences that publish work
relating to this project; these include OpenArch [49],
IWAN [50], Middleware [51] and OpenSig [48].

7 Conclusion and Future Work
This paper has stated the requirements to which the
middleware must conform together with the rationale
behind each requirement. There are many
programmable network research projects, but the vast
majority focus on the software architecture rather on
management. The projects that are concerned with
management tend to incorporate the management into
the programmable network router and are content with
being capable of only managing a single node. To the
authors knowledge, this is the only project that is
concerned with the development of a general purpose
middleware for the configuration of programmable
networks consisting of a large number of
heterogeneous programmable network routers.

Now that the requirements of the middleware have
been considered and formally documented, our
attention can be focused on the design of the
middleware. As indicated in this paper, there are a
number of issues that must be resolved regarding the

Page 11

architecture of the middleware. One of the key goals of
the design phase is determining whether or not any
existing middleware can be used to construct the
management middleware proposed in this paper.

9 References
[1] BTExact Technologies, http://www.labs.bt.com/
[2] XML, http://www.w3.org/XML/
[3] Schema, http://www.w3.org/XML/Schema
[4] Goldszmidt, G., Yemini, Y. “Distributed
management by delegation”, Proceedings of the 15th
International Conference on Distributed Computing
Systems, 1995 pp. 333–340.
[5] Yemini, Y., Konstantinou, A.V., Florissi, D. ”
NESTOR: an architecture for network self-
management and organization”, IEEE Journal on
Selected Areas in Communications, 18(5): 758 –766,
May 2000.
[6] Xlinkit, http://www.xlinkit.com/
[7] Holsman, G. “The Spin Model Checker”,
 IEEE Trans. on Software Engineering 23(5):279-295,
1997
[8] JMS, http://java.sun.com/products/jms/
[9] DyNet, http://www.socketsystems.co.uk/dynet/
[10] White, J. “Telescript Technology: The foundation
for the electronic market place”, General Magic white
paper, 1994.
[11] Aglets, http://www.trl.ibm.com/aglets/
[12] CORBA, www.omg.org
[13] RMI, http://java.sun.com/products/jdk/rmi/
[14] Cheriton, D., Deering, S. “Host Groups: A
multicast extension for datagram Internetworks”, Ninth
Data Communications Symposium, ACM Computer
Communication Review, Vol. 15, Sept. 1985.
[15] Postel, J., Reynolds, J., "File Transfer Protocol
(FTP)", RFC 959, October 1985.
[16] JNDI, http://java.sun.com/products/jndi/
[17] JINI, http://java.sun.com/products/jini/
[18] Wahl, M., Howes, T. and S. Kille, "Lightweight
Directory Access Protocol (v3)", RFC 2251, December
1997
[19] Postel, J. “Internet Protocol”, RFC 791, Sept
1981.
[20] Moy J., “OSPF version 2”, RFC 2328, April 1988.
[21] “A Border Gateway Protocol 4 (BGP-4)”, RFC
1771, March 1995.
[22] Leech, M. et al. “SOCKS Protocol version 5”,
RFC 1928, March 1996.
[23] Egevang, K., Francis, P. The IP Network Address
Translator (NAT)”, RFC 1631, May 1994.
[24] The Internet Corporation
for Assigned Names and Numbers,
http://www.icann.org/
[25] NTL, http://www.ntl.com/
[26] Telewest, http://www.telewest.co.uk/
[27] British Telecom, http://www.bt.com/
[28] Dirckze, R.A., Gruenwald, L. “Nomadic
transaction management”, IEEE Potentials 17(2): 31-
33, April-May 1998.
[29] Blake, D. et al. “An Architecture for
Differentiated Services”, RFC 2475, Dec 1998.

[30] Diffie, W. “The first ten years of public-key
cryptography”, Proceedings of the IEEE 76(5): 560–
577, May 1988.
[31] Daemon9, Route, Infinity
 “IP-spoofing Demystified”, Phrack Magazine 7(48),
June 1996.
[32] McDonel, J. “Defeating Sniffers and Intrusion
Detection Systems”, Phrack Magazine 8(54), Dec
1998.
[33] SSL, http://www.netscape.com/eng/ssl3/
[34] Dierks, T., Allen, C. “The TLS Protocol Version
1.0”, RFC 2246, Jan 1999.
[35] Aresenault, A., Turner, S. “Internet X.509 Public
Key Infrastructure: Roadmap”, PKIX Working Group
Internet draft, Jan 2002.
[36] I. Mitrani, “Probabilistic Modeling”, Cambridge
University Press, 1998.
[37] The Internet Engineering Task Force,
http://www.ietf.org
[38] Hedrick, C. “Routing Information Protocol”, RFC
1058, June 1988.
[39] Linux, http://www.linux.org/
[40] Windows, http://www.microsoft.com
[41] Gosling, A., Joy, B., Steele, G. “The Java
Language Specification”, Tech. Rep., Addison Wesley,
1996.
[42] Borland, www.borland.com
[43] GCC, http://gcc.gnu.org/
[44] Mockapetris, P. “Domain Names - Concepts and
Facilities”, RFC 1034, Nov 1987.
[45] Rio, M. et al. “Promile: A Management
Architecture for Programmable Modular Routers”, In
the proceedings of OpenSIG 2001, September 2001.
[46] Kohler, E. “The Click Modular Router”, ACM
Transactions on Computer Systems 18(3): 263-297,
August 2000.
[47] Android,
http://www.cs.ucl.ac.uk/research/android/
[48] Open Signalling Working Group (OpenSig),
http://www.comet.columbia.edu/opensig/
[49] Open Architectures and Network Programming
(OpenArch),
http://comet.columbia.edu/activities/openarch/
[50] International Working Conference on Active
Networks (IWAN), http://dblp.uni-
trier.de/db/conf/iwan/
[51] IFIP/ACM Conference on Middleware,
http://www.ifip.org, http://www.acm.org/
[52] DARPA Active Network Program,
http://www.darpa.mil/ito/research/anets/
[53] Fry, M. and Ghosh, A. “Application layer active
networking” HIPPARCH ’98 Workshop
[54] Fisher, M. “D5: Android Active Networking
Architecture”, Android Consortium, June 2001.
[55] Campbell, T. et al. “A Survey of Programmable
networks”, ACM SIGCOMM Computer
Communications Review 29(2):7-23, April 1999.
[56] Software Systems Research Group, Sussex
University, http://www.cogs.susx.ac.uk/lab/softsys/
[57] Distributed Multimedia Research Group,
Lancaster University,
http://www.comp.lancs.ac.uk/computing/research/mpg/

Page 12

[58] Distributed Computing Research Group,
University of Technology, Sydney, http://it.uts.edu.au/
[59] Distributed Software Engineering Group, Imperial
College, London, http://www-dse.doc.ic.ac.uk/
[60] Software Systems Engineering Group, University
College London,
[61] Eriksson, H. “The Multicast Backbone”,
Communications of the ACM 37(8):54-60, Aug. 1994.
[62] Berson, S., Braden, B., Riciulli, L. “Introduction
to the ABone”, Information Sciences Institute, June
2000, http://www.isi.edu/abone/
[63] Emmerich, W. “Engineering Distributed Objects”,
Wiley, 2000.

11 Acknowledgements
Firstly I would like to thank my supervisor Wolfgang
Emmerich and the Promile research group based at
University Collate London for their continuing support
of my research and for the stimulating discussions
relating to the area of programmable networking. Paul
McKee and Mike Fisher from BTExact have also been
very supportive, especially with regard to the place of

programmable networking in industry and existing
work in this field. Thanks also go to EPSRC and
BTExact for funding my research.

Andrew Hughes is
currently perusing a PhD
in the Department of
Computing Science at
University College
London, his research is
focused in the area of
programmable networks.
He is one of the first
students to be based at the

new UCL campus at Adastral park which is designed
to strengthen the collaboration between the university
and BTExact Technologies. Andrew graduated from
the University of Newcastle-upon-Tyne in 2001 with
an honours degree in computing science. In 2000, he
co-founded a software development company that
works in the area of virtual networking.

