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Abstract 

The imitation of spoken stop consonants by an articulatory 

synthesizer using only general learning principles addresses 

significant issues in speech inversion and speech acquisition. 

Stop consonants are relatively large, complex acoustic events 

resulting from discrete articulations, so inversion based on 

the use of small time windows or based on the minimisation 

of average articulatory error across multiple places of 

articulation will not provide a satisfactory solution. This 

paper explores the effect of variation in inversion window 

size and the use of smoothing constraints on the quality of 

imitation of the stops [b], [d] and [g]. However good results 

are only obtained when inversion is supplemented by a 

phonetic labelling performed over a large time window. This 

source of additional phonetic information allows inversion to 

exploit different discrete gestures for the different places of 

articulation. The results demonstrate the importance of a 

phonological layer of perceptual analysis prior to imitation 

and speech acquisition. 

1. Introduction 

In the scientific study of speech production, speech imitation 

is a variant of the speech inversion problem with different 

goals and applications. Whereas speech inversion seeks to 

find a set of articulatory parameters of a vocal tract that 

would have generated a given acoustic signal, speech 

imitation seeks to find a possible output of a vocal tract that 

best matches a given acoustic signal. Speech inversion is a 

tool useful to investigate sound production in the vocal tract, 

while speech imitation is a way of studying the learning 

system that underlies spoken language acquisition. 

 

The significant differences between speech imitation and 

speech inversion include: (i) that exact imitation may not be 

possible, so that the system must seek to produce the best 

imitation using the resources available, (ii) that the criterion 

for success is measured in the acoustic domain, not the 

articulatory domain, and (iii) that imitation does not rely on 

any privileged access to the articulation used by the target 

speaker. For imitation to have relevance to human infant 

acquisition, it must be built solely on access to a (simulated) 

vocal tract, a system for auditory analysis and general 

learning principles. 

 

Solutions to the speech inversion problem have generally 

fallen into three categories: a search through a large 

codebook of articulatory to acoustic mappings, e.g. [1]; a 

constrained mathematical solution to the inversion of the 

articulatory sound generation function, e.g. [2]; or the use of 

trainable mappings between measured articulatory and 

acoustical parameters, e.g. [3]. On the whole these methods 

are not suitable for imitation, either because they rely on 

privileged access to correct articulations, or because they use 

cognitively unrealistic mathematical analysis. 

 

The problems of imitation are also intimately related to 

issues of phonological development. As a child learns to 

speak, so there are changes in his/her perceptual system in 

terms of sensitivity to acoustic differences within and across 

phonological categories. These categories, in turn, appear to 

influence the inventory of articulatory gestures available for 

production. The acquisition models of Guenther [4] and 

Bailly [5] exploit the link between discrete phonological 

categories in perception and production. However there is 

still much to be learned in terms of how the discrete 

categories are learned from audio signals, what determines 

which categories are used, and how speaking and listening 

interact. The speech imitation problem is a convenient 

framework in which to investigate the problems facing an 

infant learner. We try to keep our solutions within the 

bounds of what is logically and cognitively plausible. We 

aim to use fairly realistic articulatory synthesis and auditory 

analysis of real sounds. We expect our solutions to be 

sensitive to the properties and deficiencies in the articulatory 

and auditory processing systems in an analogous way to 

human infant learners. 

2. The problems of imitating stop consonants 

In this study we concentrate on the imitation of the stop 

consonants [b] [d] and [g] since this simple task highlights 

issues that are significant to both speech imitation and 

speech inversion. In particular, the estimation of articulatory 

synthesizer parameters from an acoustic recording such as 

[?a?c?f?] suffers from the following problems: 

a. The stops are relatively large events, extending over 

100ms of signal, so any analysis needs to accumulate 

evidence over a wide time window 

b. The central silent region of the stops is the same for 

each place of articulation, causing a one-to-many 

acoustic to articulatory mapping. 

c. The learning of an "average" stop is not a good solution 

since an average of the articulations for [b] [d] and [g] 

may have neither the place nor manner of a stop. 

d. The learning of a "partial" stop without a complete 

closure is not a good solution as this may result in the 

realisation of an approximant or fricative. 

 

Thus imitation of stop consonants given only an acoustic 

target is a difficult task for an articulatory synthesizer. But 

rather than seek ad hoc engineering tricks to get the best 

inversion, we are interested in how well a general purpose 

learning scheme performs on this problem, and where it 
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fails. In this way we hope the analysis will provide insights 

into more general aspects of speech acquisition. 

 

In this paper we use supervised learning to train an inverse 

model to control an articulatory synthesizer. We show how 

adjustments to the configuration and training of the model 

affect its performance on the imitation of the test phrase 

[?a?c?f?]. We investigate: 

a. How accuracy of imitation is related to the size of the 

acoustic and articulatory windows (section 4), 

b. Whether "oracle" labelling of place of articulation 

improves learning (section 5), 

c. Whether imitation is improved by a combination of 

phonetic labelling and inversion (section 6). 

Section 3 provides background technical details. 

3. Research environment 

The articulatory synthesizer was developed from the design 

by Maeda [6] as distributed in a MATLAB version [7]. The 

synthesizer is controlled by one jaw parameter, three tongue 

position/shape parameters, and two lip parameters. A version 

of the LF model [8] was used as a voice source and was 

controlled by fundamental frequency and glottal area 

parameters. For more information see the project web site 

[9]. The articulatory parameters were low-pass filtered at 

20Hz and sampled at 100 frames/s. The output sampling rate 

was 20,000 samples/s. 

 

The acoustic analysis was performed using a 26-channel 

auditory filterbank delivering energies in 26 bark-scaled 

channels every 10ms. This was accompanied by a "voicing 

degree" track which gave a probability of voicing and by a 

fundamental frequency track. Analysis was performed by the 

voc26, vdegree and fxrapt programs of SFS [10]. The 

acoustic parameters were further pre-processed before 

presentation to the pattern classifier. The mean slope of the 

auditory spectrum in each 10ms frame was subtracted from 

the filterbank energies and added as two further parameters, 

to make 30 parameters in total. All parameters were then 

normalised to zero mean and unit variance using a long 

spoken passage. 

 

The pattern recognition technique used to implement the 

inverse model was a conventional feed-forward multi-layer 

perceptron with linear output units trained by back 

propagation. Training data with matched articulatory and 

acoustic parameters was generated by babbling, that is by 

random variation of articulator parameters. The statistics of 

the babbling were controlled to simulate the steady-state and 

transitional durations of human speech. 

 

The artificial target signal (Fig 3 top) was generated by the 

Maeda synthesizer using hand-crafted parameters unrelated 

to those use to generate the babble training set. The natural 

target signal (Fig 9 top) was recorded from an adult male 

speaker. 

4. Baseline performance 

Using 100s of babble, networks with 50 hidden units were 

trained to map acoustic parameters back to articulatory 

parameters for a number of different input and output 

window sizes. Figure 1 shows RMS articulatory error on the 

artificial target signal as a function of input acoustic window 

size for three different output articulatory window sizes. 

 

Results show best performance with input windows around 

50-70ms, with performance decreasing as the window size 

increased above 70ms. Small benefits are gained from the 

output of 30ms or 50ms of articulatory parameters per input 

window rather than just a single 10ms frame (output 

windows are overlapped and averaged across the signal). 
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Figure 1. RMS articulatory error on artificial target 

as a function of network input and output window 

size. 

Small improvements in performance can also be gained if the 

inverse model is penalised for generating articulatory 

parameters which jump in value from frame to frame. To 

implement this the training error E on an output unit becomes 

 E(t) = T(t) – O(t) + s.(O(t-1) – O(t)) 

where T(t) is the target at time t, O(t) is the output at time t, 

and s is the smoothing coefficient. The effect of the addition 

of a smoothing constraint is shown in Figure 2. 
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Figure 2. RMS articulatory error on artificial target 

phrase for a network with 30ms output window as a 

function of input window size and smoothing 

coefficient. 

The use of a smoothing constraint makes a small but 

significant improvement in RMS error. The best output was 

given by a model with 50ms of acoustic input and 30ms of 

articulatory output using a smoothing coefficient of 0.2. The 

original test signal and the imitated test signal generated by 

the best performing inverse model are shown in Figure 3. 
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Figure 3. Top – artificial target phrase Z?a?c?f?], 

bottom – direct imitation using best inverse model. 

Although the spectrographic pattern in Figure 3 looks quite 

good, the articulation of the stops themselves is far from 

convincing, as can be seen by a comparison of the 

articulatory parameters generated by the model and the 

parameters used to generate the test phrase. See Figure 4. 

 

Figure 4. Comparison between correct and inverted 

articulatory parameters for the artificial test phrase. 

From bottom: jaw height, tongue position, tongue 

shape, tongue apex, lip area, lip protrusion, glottal 

area, fundamental frequency. 

Significantly, Figure 4 shows an incomplete lip closure in [b] 

and an incomplete tongue raising gesture in [g]. Furthermore, 

similar lip protrusion gestures are seen in both [b] and [g]. 

On the other hand the tongue tip movement in [d] is handled 

quite well, possibly because tongue tip approximation causes 

small amounts of alveolar friction that makes the alveolar 

stop distinctive. It is important to note that the visible silent 

gaps in Figure 3 were caused by larynx adjustments rather 

than by oral closures. 

5. Test of ideal performance 

To determine how much of the inadequacy of the inverse 

model was due to limitations of the machine learning 

techniques (i.e. training regime and network structure) rather 

than to the problem itself, an "oracle" training method was 

tested in which each training data vector was increased in 

size to include binary features representing the presence of a 

bilabial stop closure, an alveolar stop closure or a velar stop 

closure. Although such perfect labels could not occur in real 

imitation, they make the acoustically identical regions 

distinct to the inverse model so that it should then be able to 

generate distinct articulatory gestures for each place of 

articulation 

 

Figure 5 shows that this was indeed the case. With the benefit 

of place labelling, the correct articulations are almost 

perfectly recreated by the inverse model. The conclusion is 

that it is the one-to-many mapping arising from the use of too 

little context that is the problem, not the inadequacy of the 

machine learning. The labels allow the inversion to make use 

of a larger context without requiring a larger input window. 

 

Figure 5. Improved inversion possible from perfect 

place labelling in the training and test data. 

6. Combined labelling and inversion 

Since the availability of stop place labels makes a significant 

improvement to the inverse mapping, this suggests a two 

phase inversion strategy, where phase one estimates the place 

labels, while phase two performs the inversion. See Figure 6. 

 

 

Figure 6. The labelling system augments the acoustic 

data input to the inverse model. 

The first phase place labelling network is trained using 

labelled babble data to generate the [b], [d], [g] label tracks 

from the acoustic signal using a wide symmetric window of 

150ms. The second phase inversion network takes the 

acoustic frames and the label tracks with a narrower window 

of 50ms and generates 30ms overlapping windows of 

articulatory data as before. The output of the place labelling 

and the improved imitation is shown in Figure 7 (cf. Figure 

3), with the articulatory parameters shown in figure 8 (cf. 

Figure 4). 

 

Clear improvements in the imitation can be seen in the 

articulatory tracks and also heard in the synthesizer output. 

Greater articulator movement in [b] and [g] leads to more 

stop-like formant transitions, which make them sound more 

convincing. 

 

 



 

Proc. EuroSpeech 2005, Lisbon, Portugal 

 

Figure 7. Recognised place labels and improved 

imitation of [?a?c?f?] using recognised labelling. 

 

Figure 8. Improved inverted articulatory parameters 

for the test phrase using recognised place labelling 

as well as acoustic input. 

Finally the whole process was repeated on the natural target 

speech signal, shown in Figure 9. The imitation of the natural 

target is worse than for the artificial target, but retains some 

attributes of the target stop consonants. The formant 

transitions for [d] are actually exaggerated and more like the 

transitions used on the artificial data. 

7. Conclusions 

The imitation of stop consonant articulations from an 

acoustic signal is a simple task that is hard to perform well 

and which highlights important issues in speech inversion 

and speech imitation. Large time windows are required to 

identify each consonant so that categorically distinct 

articulatory gestures can be performed. However large 

windows are difficult to train because of the large number of 

degrees of freedom in the model, the amount of training data 

required for good estimation of the model, and the 

interference caused by irrelevant data in the input pattern. 

 

The results here show that a two phase strategy that first 

labels and then performs articulatory inversion using both the 

acoustic data and the labels as input allows the exploitation 

of a larger context. Since similar networks are used to 

implement both pattern recognition tasks, it is possible to 

foresee a training strategy in which both networks are trained 

together, to seek to minimise the acoustic error of the 

imitation. This approach is related to "distal" learning [11] 

and to methods for the inference of underlying phonetic 

parameters [12]. 

 

 

Figure 9. Natural target phrase and imitation using 

the combined method 

Infant learners could discover the utility of discrete categories 

in two ways: either because they help explain the statistics of 

the auditory signal, or because they help guide discrete 

articulatory gestures. Speech imitation can make a 

contribution to settling this long-standing debate about the 

interaction of perception and production. 
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