
Trust-Based Collaborative Filtering

Neal Lathia, Stephen Hailes, Licia Capra

Abstract k-nearest neighbour (kNN) collaborative filtering (CF), the widely suc-
cessful algorithm supporting recommender systems, attempts to relieve the problem
of information overload by generating predicted ratings for items users have not
expressed their opinions about; to do so, each predicted rating is computed based
on ratings given by like-minded individuals. Like-mindedness, or similarity-based
recommendation, is the cause of a variety of problems that plague recommender
systems. An alternative view of the problem, based on trust, offers the potential to
address many of the previous limiations in CF. In this work we present a varation of
kNN, the trusted k-nearest recommenders (or kNR) algorithm, which allows users
to learn who and how much to trust one another by evaluating the utility of the rat-
ing information they receive. This method redefines the way CF is performed, and
while avoiding some of the pitfalls that similarity-based CF is prone to, outperforms
the basic similarity-based methods in terms of prediction accuracy.

1 Introduction

Over the last decade, recommender systems have had a rising presence on the
web, transitioning from novelty components of e-commerce portals to become fo-
cal points of many web services. Implemented throughout e-commerce, movie and
music profiling web sites, the goal of recommender systems is the flipside of classi-
cal information retrieval; these systems aim to present users with interesting content
based on their historical behaviour, rather than answering a specific query. Collab-
orative Filtering [1], or CF, has emerged as the dominant algorithm behind recom-
mender systems, and, as the name describes, it uses the collaborative effort of an
entire community of users to help each individual sift through the endless amounts

Neal Lathia, Stephen Hailes, Licia Capra
Department of Computer Science, University College London, London WC1E 6BT, UK
e-mail: n.lathia, s.hailes, l.capra @cs.ucl.ac.uk

1

2 Neal Lathia, Stephen Hailes, Licia Capra

of online content. The current assumptions of CF are that historically like-minded
individuals will also share similar tastes in the future. Measuring similarity plays a
central role; only the top-k most similar users are allowed to contribute their ratings,
and each contribution is weighted according to the specific degree of similarity the
neighbour shares with the current user.

Grounding the prediction engine of CF algorithms in similarity measures hides a
number of pitfalls, which stem from the fact that user profiles are incredibly sparse
and limited in breadth. When users have no profile, there is no way to measure their
similarity to anyone else’s; the cold-start problem arises and no predictions can be
made for the user. When users do have a profile, the neighbours they are assigned
often cannot provide information about new items of interest; prediction coverage
problems appear. Lastly, users look to recommender systems to provide both use-
ful and serendipitous (or “surprising”) results, and although this is a very difficult
quality to measure in an algorithm, the lack of this property finds its provenance in
locking measurably similar users together. These three problems originate from the
fact that user profiles are incredibly sparse. The set of items that a user has rated,
and hence expressed an opinion about varies in size from one user to the next. Based
on the ratings each user has provided and the varying degrees of overlap between
user profiles, we are currently unable to know exactly which other users would be
perfect recommenders. Since CF systems hold a highly incomplete picture of the
participating users they need to deal with an immense amount of uncertainty, and
the current similarity-based methods often fall short of the desired performance.

An alternative view of CF systems, based on trust, has the potential to address
many of the problems outline above. As detailed in [2], trust has been applied to
a wide range of scenarios, including (but not limited to) access problems, or de-
ciding who should be trusted to access content or services [3], problems involving
sanctioning, or punishing network nodes that misbehave in a given context [4], and
signaling: or helping users decide whether to access a resource or not. The last
problem is surprisingly similar to problem the CF aims to solve. Descriptions of in-
formation overload [5] tell us that there is simply too much content for users to find
all the items that they will like, and recommender systems alleviate this problem
by helping each user decide which content to access. However, trust broadens the
limited view of similarity to encompass a wider range of characteristics; we define
recommenders to be trustworthy if they are consistent sources of valuable informa-
tion, which can be appropriately interpreted when predicting how much a user will
rate an item. We therefore propose to tackle the problem of information overload as
a trust-management problem, and introduce and evaluate the following:

• Selecting Neighbours Based on Trust: neighbour selection based on profile
similarity is replaced by a utilitarian evaluation of the value that each user pro-
vides to others, and trust is awarded accordingly, as described in Section 2.1. In
particular,

• Lack of Information is Informative: our method awards varying degrees of
trust to all those who were potential recommenders for each item a user rates,
and downgrades trust scores for users who could not provide any information. In

Trust-Based Collaborative Filtering 3

Fig. 1 A Trust Principal in a Web of Trust

other words, the presence (or lack) of information is used when computing trust
values.

• Retrieve Ratings from Recommenders, Not Neighbourhoods: Limiting users
to a top-k neighbourhood damages the prediction coverage that is possible. We
propose to operate according to a top-k recommenders, or users who have the
required information to make a prediction, in Section 2.2.

• Divergent Ratings can be Useful. The fact that two users completely disagree
in their ratings does not imply that this information cannot be successfully used:
an appropriate interpretation is required, as we discuss in Section 2.3.

2 Filtering as a Trust Problem

Can we use the properties of trust systems to address the difficulties faced by recom-
mender systems? To answer this question, we need to understand how a trust system
works, and then explore whether the methods it describes are applicable to CF or
not. A trust system is a network of interacting peers, or trust principals [2]. Formal
models of trust often divide the process of building a trust relationship with another
entity into an interaction between two internal components, as we have depicted in
Figure 1. The first is the risk engine, a component that decides whether to enter into
a transaction with the entity or not. Assuming that it does enter into this transaction,
then the risk engine will observe the results, and report these observations to the
trust engine. The trust engine evaluates the interaction, and updates its trust in that
entity according to rules defined in a trust policy. Each principal has a subjective
view of the environment around it, and the entire community of principals forms a
web of trust.

In CF, each user can be described as a trust principal, which needs to decide what
content to access. To do so, the risk engine needs to decide whether to recommend
an item to the end user, by generating predicted ratings. Each predicted rating is
computed by collecting rating information from a subset of the other principals in
the system. Which principals should be selected? Here the risk engine queries the

4 Neal Lathia, Stephen Hailes, Licia Capra

trust engine, which maintains and updates a table of trusted peers. Traditional CF
dictates that only provably similar neighbours should be considered, and the rest dis-
regarded. Once the actual rating is received from the end user, the actual experience
with the content is known, and the trust principal can look back on the prediction it
made to not only see if it was correct, but if it also appropriately weighted the con-
tributions it received from the surrounding principals, and can update its trust values
accordingly. A CF environment, where a decision mechanism is needed in order to
select an appropriate subset of users to act as recommenders, therefore, can be de-
scribed as an instance of a trust based system. If CF is considered as an instance of
a trust-management problem, the reverse approach can be adopted; we begin from
the perspective of a trust-management system and construct a CF algorithm, by de-
scribing the operation of each component of the trust principal.

2.1 The Trust Engine

The first decision that must be made in a CF system is who to interact with; each
user needs a defined neighbourhood of recommenders. This step is supported by the
assumption that collecting information from everybody (and basing predictions on
item reputations) will not be as useful as only aggregating the information from the
“appropriate” sources; and thus involves deciding who these appropriate users will
be. Traditionally, a user’s neighbourhood has been populated with the top-k most
similar users in the system. To do so, the common ratings in two user’s profiles, ra
and rb, are compared to each other, using measures such as the Pearson Correlation
Coeffiecient [6]:

wa,b =
Σ N

i=1(ra,i− r̄a)(rb,i− r̄b)√
Σ N

i=1(ra,i− r̄a)2Σ N
i=1(rb,i− r̄b)2

(1)

The similarity wa,b between users a and b is computed as the degree of linearity
between the ratings. Many other similarity measures have been proposed [1, 7], yet
they all share the same characteristic; they rely on a non-empty intersection between
two user’s profiles in order to find a measure of similarity, and only measure simi-
larity using co-rated items. This assumption is the primary cause for the cold-start
problem (since users may have no historical profile), and can lead to poor prediction
coverage (as the only rating information for certain items may belong to recom-
menders with zero-similarity). It also has been shown that the various similarity
measures tend to disagree with one another; there is no way of finding the optimal
method [8]. What we propose is a new method based on trust.

Transferring the current idea of CF into a trust based context means “I trust the
best k users who can show that they have similar opinions to my own, and I do not
trust anyone else.” However, the broader approach put forward by trust management
research, is also worthy of exploration. The equivalent quote would be “I trust the
users who I have had a positive experience with, and do not know how much to trust

Trust-Based Collaborative Filtering 5

the rest.” This quote introduces two new important concepts, which may offer an
escape route from the pitfalls of CF algorithms:

• Uncertainty: Users should not necessarily be excluded from contributing to one
another’s predicted ratings if they have no measurable value of similarity. They
can still be sources of serendipitous and valuable information, if there is a means
of dealing with the uncertainty.

• Value: Being the optimal recommender is not simply a matter of high similarity,
but can be described according to two further qualities. The best neighbours will
have the information necessary to participate in the user’s predicted ratings and
positively influence the predicted rating towards the opinion that the user will
provide. In other words, the neighbour’s opinion should be heavily weighted in
the user’s predictions, and thus similarity will be an emergent property of the
trust relationship, rather than being the cause of it.

When the user a enters a rating ra,i for an item i, the system examines all the
rating information available for item i, and asks; how much should the user have
trusted each of these recommenders? If we were considering this problem from the
perspective of a user-item rating matrix, this process would iterate over item i’s
column, and for each row (i.e. recommender) b make a utilitarian evaluation of the
entry compared to the user’s rating r:

value(a,b, i) =
−1
5
|ra,i− rb,i|+1 (2)

If the recommender b has not rated item i, a trust score of 0 is returned. The equation,
which assumes a five-star rating scale, awards the highest trust to users who rated the
item exactly as the user did. As the distance between the user’s rating and the rec-
ommender’s rating increases, trust decreases linearly. However, if a recommender b
has rated the item, the trust score will be positive, even if the recommender’s rating
was the complete opposite of the user’s. This captures the fact that even if ra,i was
1∗, and rb,i was 5∗ (so the absolute difference between the ratings is 4), the recom-
mender b was able to provide a with information regarding i, even if the opinion
was very distant to a’s. A measure of value, therefore, departs significantly from
similarity measures by awarding discordant ratings. The computed value is used to
update the trust for recommender b, which is an average of the value contributed
over all the n historical ratings:

trust(a,b,n) =
Σ n

i=0value(a,b, i)
n

(3)

The idea is to reward recommenders who can provide information, varying the re-
ward according to the perceived quality of the information, and to downgrade rec-
ommenders who do not have any information available. The trust values that are
assigned to other users in this system will range from 0 to +1. Similarity measures,
on the other hand, range from −1 to +1; we therefore disregard the concept of dis-
similarity or distrust [9], in favour of rewarding sources of information. The reward
scheme we implemented is a linear function based on the absolute distance between

6 Neal Lathia, Stephen Hailes, Licia Capra

the user’s and recommender’s ratings. We could have also implemented value func-
tions with higher degrees, such that the amount of trust rewarded falls at a sharper
rate as the distance increases. In this work, for the sake of simplicity and the encour-
aging results we obtain, we focus only on the linear case. Structuring the selection
of neighbours based on learned trust has the added benefit that it need not be fully
recomputed every time that a system update is performed; much like other learning
algorithms [10], trust is learned incrementally as the user inputs more ratings.

Users are no longer weighted according to how like-minded they are, but will
be weighted according to the quality of the information that they exchange with
each other. Since the amount of information that a user provides to others may vary
from how much information that user receives, weightings between user pairs are no
longer guaranteed to be symmetrical. Furthermore, based on each users’ initial dis-
position to trust the other nodes around it, users will no longer ignore the potentially
useful information they receive from neighbors they have never interacted with, or
a neighbor that they bear zero similarity to. Rating information will be weighted ac-
cording to trust, a value that will reflect a history of interactions rather than a history
of similar ratings.

2.2 Finding Opinions: k-Nearest Recommenders

Once the ranking of neighbours is complete, and trust values have been assigned to
all users, a second decision must be made: CF needs to determine what neighbours
will be acceptable sources of information. There are a variety of methods that can
be implemented, which we define here:

• Threshold-based: All neighbours with weights above a pre-determind threshold
are potential recommenders. Selecting such a threshold is a difficult decision,
since it is dependent on the distribution of weights over the community [8], and
hence is also dependent on the method that is used to rank neighbours.

• k-Nearest Neighbours: Traditional CF operates by limiting interactions to the
top-k neighbours. The limitations are two-fold: on the one hand the user can
have no more than k neighbours; on the other the algorithm only works if the
user shares a measurable degree of similarity with these neighbours. If this is not
the case, neighbours are assigned a zero-weighting, and any contribution from
them is disregarded. Each user’s neighbourhood can therefore be considered a
static group of users, which may only change when the system is updated.

• k-Nearest Recommenders: A further change we introduce is a slight modifica-
tion to kNN, by allowing users to search for the top-k neighbours who can actu-
ally provide information about the item that requires a predicted rating. Ranking
the users is a job for the trust engine, but in order to maximise coverage we look
to those who can provide information when making a prediction; a method we
define as the k-nearest recommender, or kNR, strategy. Unlike kNN, each user’s
neighbourhood will be dynamic, and the selection of neighbours will be guided
by the item that a prediction is being made for.

Trust-Based Collaborative Filtering 7

2.3 The Risk Engine

Now that we have outlined how the trust engine works, we have a means of selecting
and updating each user’s neighbourhood. This neighbourhood defines the breadth
and quality of information that is available to generate predicted ratings for each
user, and will hopefully be populated with neighbours who are good sources of
valuable information, as we have constructed above. We now require a means of
combining, or aggregating, the information that a user receives from his neighbours
in order to generate a predicted rating. The predicted rating will determine whether
the item should be recommended to the end user or not, and thus the aim is to
minimise the risk of accessing (or even being recommended) uninteresting items.
Traditional CF defines this task as a job for the prediction engine [6], we however
chose to align our terminology with trust management research [2] and call it a risk
engine. The role of this component will be to select the top-k neighbours N(a, i)
of user a who have rated the item i we want to make a prediction about, and can
combine the ratings with trust values in one of two ways:

pa,i =
Σb∈N(a,i)rb,i×wa,b

Σb∈N(a,i)wa,b
(4)

This equation simply takes a weighted average of each neighbours rating, and has
been used widely [11]. The second method converts each neighbours rating into an
opinion, by seeing how much it deviates from that neighbour’s mean rating, and can
thus derive a predicted rating for a user that is centred around that user’s mean, by
taking a weighted average of neighbour opinions [6]:

pa,i = r̄a +
Σb∈N(a,i)(rb,i− r̄b)×wa,b

Σb∈N(a,i)wa,b
(5)

Both of these equations share a common assumption: they assume that the people
who are rating items share a common interpretation of the rating scale, and thus two
users who have input different valued ratings disagree with each other. Rating items,
however, is a human activity, and is only guided by descriptive adjectives of what
each value should represent (1 = poor, 5 = excellent). Each user of a recommender
system can and will interpret these adjectives differently, and form their own mental
model of the rating scale, to then use it subjectively, even if in general their opinions
may tend to agree. We therefore introduce an additional characteristic of a trust-
relationship: learning to interpret the opinion that we receive from a recommender.
This idea has previously only been applied to trust management systems, by finding
the semantic distance between a recommendation and one’s own opinion [12]. The
interpretation will serve to boost the prediction accuracy of Equations 4 and 5, and
is best demonstrated by introducing an example. Our example uses actual rating
information of two individuals in the MovieLens1 movie rating dataset, collected by
the GroupLens team at the University of Minnesota. The dataset consists of 100,000

1 http://www.grouplens.org/

8 Neal Lathia, Stephen Hailes, Licia Capra

1* 2* 3* 4* 5*
1* 0 0 0 0 0
2* 0 0 0 2 0
3* 0 0 0 3 3
4* 0 0 0 3 1
5* 0 0 1 6 3

Table 1 Two-Way Contingency Table

Lower Same Higher Transpose
1* 0 0 0 1.00
2* 0 0 0 2.00
3* 0 0 1 4.00
4* 5 3 6 4.07
5* 4 3 0 4.43

Table 2 Interpreting Bob’s Ratings

ratings, from 943 users on 1682 movies. Each user has rated at least 20 movies, using
a five-star rating scale. The dataset has been subdivided into five disjoint training/test
sets (u1, u2, ... u5), in order to use the training sets to set any necessary values (such
as finding similarity measures), measure the predictive power of a CF method on
the test set, and perform five-fold cross validation of experimental results.

2.3.1 An Example

Let us consider two users from the MovieLens u1 subset, the users with ids 1 and
10, who we respectively rename Alice and Bob. A quick look at their training set
profiles shows that Alice has rated 135 items, and Bob has rated 94 items. The over-
lap, or number of co-rated items, between the two profiles, has size 22. For the sake
of simplicity, let us assume that predictions for unrated items will be done with a
single recommender (i.e. k = 1), and that the underlying neighbourhood selection
procedure has determined that Bob is the best recommender for Alice. We can there-
fore proceed to make predictions of the items in Alice’s test set, using the opinions
expressed in Bob’s profile.

The first point we can observe is that the overlap between Alice’s test set and her
recommender’s training set has size 18. Therefore, we can only make predictions on
18 of her 137 test items, and so the coverage we achieve will be around 13%. Since
we are using a single recommender, the amount that we weight Bob’s opinions is
unimportant; we simply go ahead and make 18 predictions, and only collect error
measures from these items. In other words, in this case we are only interested in
how well we perform when we can make a prediction, and disregard all uncovered
items from the accuracy error measure.

If the predictions are made with Equation 4, the achieved mean absolute error
(MAE) between the predictions and actual ratings is 0.888, while if we use the
opinion-based Equation 5, we do slightly worse with a MAE of 0.948. However,
both methods assume that Alice and Bob are using their rating scales in the same
way. In other words, if both Alice and Bob agreed about the quality of a movie, they
would both give it the same rating, and therefore the main task of CF algorithms
becomes that of finding two users who not only rate the same items, but rate them in
the exact same way as well. However, Alice and Bob may be using the rating scale
differently from one another. Therefore, Alice’s “excellent” rating may be equiva-
lent to Bob’s “great,” and in the same way Bob’s “very poor” (1 star) may be Alice’s

Trust-Based Collaborative Filtering 9

“poor” (2 stars). In general, they tend to agree about the items they rate, but the error
remains high due to the misalignment between their use of the rating scale.

We can visualise the extent to which Alice and Bob’s opinions diverge from one
another by combining their ratings into a two-way contingency table, as shown in
Table 1. Each entry in the table corresponds to the frequency that Alice and Bob
gave a particular rating; a 6 in the last cell from the right of the bottom row tells us
that on 6 separate occasions Bob’s recommendation was 5 stars, and Alice’s rating
was 4 stars.

This table highlights a number of characteristics, such as the fact that Alice’s
training ratings are never lower than 3 stars, reflecting the positive skew of rating
distributions that is common to CF datasets. This approach has been used to deter-
mine the extent to which two movie raters agree in their opinions [13], yet in this
work we use it to interpret the information that we receive from a recommender. In
fact, Table 2.3 can be reduced to a 5×3 table recording the experiences that Alice
has compared to Bob’s recommendations, and Alice can learn to transpose the rat-
ings she receives from Bob in order to correctly interpret, or transpose, them based
on the experiences she has shared with him.

The transpose of a recommender’s rating is found by computing a weighted mean
of the experiences shared with the recommender when receiving that rating. For
example, when Alice receives a 5 star recommendation from Bob, she knows that of
the seven times she received 5 stars from him before, four of those times her opinion
was slightly less than 5. She thus interprets 5 stars from Bob as 4.43 stars on her
own scale, as shown in Table 2. This is described by the following formula:

transpose(r) =
(r−1× lowerr)+(r× samer)+(r +1×higherr)

lowerr + samer +higherr
(6)

For the ratings that have no recorded historical experience the transpose remains the
same as the rating. When a rating can be transposed, however, it replaces the actual
rating in Equations 4 and 5. In other words, we learn to interpret the opinions we
receive from recommenders as we interact with them. If we recompute the predic-
tions on Alice’s test set using Equation 4 and Bob’s transposed ratings, the error in
the predicted ratings falls from 0.888 to 0.710, while if we use Equation 5, the mean
absolute error is reduced from 0.948 to 0.791. In other words, in this toy example,
we were able to improve the recommendation accuracy of the items we could make
predictions on by including the interpretation of the neighbour’s rating into the trust
relationship. Using these ideas, we can now perform a full scale evaluation on the
entire MovieLens dataset.

3 Evaluation

To evaluate the performance of our method, we used the MovieLens dataset, the
same dataset we used in Section 2.3.1. In this paper, we report the full results from
the u1 subset and provide summarised results from the rest of the subsets.

10 Neal Lathia, Stephen Hailes, Licia Capra

Trust-Learning Weighted-PCC Co-rated Proportion
Neighbours X-MAE Covered (%) X-MAE Covered (%) X-MAE Covered (%)

1 0.8705 99.84 0.8723 45.44 0.9164 38.45
2 0.8226 99.84 0.8513 63.18 0.8946 54.02
5 0.7913 99.84 0.8195 81.32 0.8464 74.28
10 0.7821 99.84 0.7906 90.42 0.8139 85.24
30 0.7791 99.84 0.7565 96.80 0.7781 94.77
50 0.7794 99.84 0.7476 97.94 0.7673 97.02

100 0.7804 99.84 0.7434 99.0 0.7590 98.65

Table 3 MovieLens u1 XMAE and Coverage Results

Trust-Learning Weighted-PCC Co-rated Proportion
Dataset X-MAE Covered (%) X-MAE Covered (%) X-MAE Covered (%)

u1 0.7916 99.84 0.8195 81.32 0.8464 74.28
u2 0.7793 99.82 0.8159 79.16 0.8380 76.58
u3 0.7729 99.82 0.8158 79.84 0.8488 77.04
u4 0.7717 99.87 0.8247 80.24 0.8399 76.68
u5 0.7752 99.82 0.8263 81.52 0.8461 74.26

Average 0.7781 99.83 0.8204 80.42 0.8438 75.77

Table 4 MovieLens Subset Results, k = 5

One of the major problems concerning the evaluation of CF systems is the power
of the error measures used; the primary focus of research to date is to achieve the
highest possible mean accuracy. The primary error measures have therefore been
the MAE, as used in the above example, and the root mean squared error (RMSE).
In this work we collect error measures exclusively on the items that we can make
predictions for, as we did in Section 2.3.1. We call this error exclusive-MAE, or
X-MAE, values. This error measure must go hand in hand with coverage statistics,
and thus leaves the trade-off decision between coverage and accuracy to those im-
plementing recommender systems. The results are shown in Tables 3 and 4.

We compare the performance of our method to two similarity measures: the
weighted-PCC in the second column, and the proportion of co-rated items in
the third, which have both demonstrated to be accurate and successful means of
similarity-based CF [8, 6]. When using similarity measures, we report results from
using the traditional kNN strategy.

The immediate highlight of the results is the improvement in accuracy and cov-
erage when very small neighbourhoods (k) are used; while co-rated similarity-based
prediction achieves a MAE of 0.9164 on 38.45% of the dataset, the trust learning
method nearly covers all predictions, 99.84%, and reduces the MAE to 0.8705. The
improved coverage comes from the kNR strategy: we look for recommenders who
have rated the item in order to generate a predicted rating, and even when doing
so manage to maintain an improved level of accuracy. Coverage is not boosted to
a maximum value since the dataset contains ratings for which there are no existing
ratings.

Trust-Based Collaborative Filtering 11

k = 5 Number of Opinions
Method Total 1 2 3 4 5

Co-Rated 14,856 4,268 3,714 3,029 2,345 1,500
Weighted-PCC 16,263 4,119 4,020 3,686 2,863 1,575
Trust-Learning 19,968 38 53 97 65 19,715

Table 5 MovieLens u1 Neighbour Participation Results, for k = 5

k = 100 Number of Opinions
Method Total 1 (1-25) (25-50) (50-75) (75-100)

Co-Rated 14,856 4,268 3,714 3,029 2,345 1,500
Weighted-PCC 16,263 4,119 4,020 3,686 2,863 1575
Trust-Learning 19,968 38 1,945 2,538 2,417 13,030

Table 6 MovieLens u1 Neighbour Participation Results, for k = 100

As the neighbourhood size increases, the accuracy results improve across all
methods, and the difference between the methods is found in the coverage results. In
fact, neither of the similarity measures achieve maximal coverage with fewer than
100 neighbours, which is a very large proportion of the 943-user dataset. These re-
sults also appear in the subset summary of Table 4: when k is 5, the trust method
will, on average, cover a near-maximal proportion of the dataset with a higher level
of accuracy than the similarity measures accomplish on smaller amounts of the same
datasets. However, accuracy and coverage results are not the sole descriptors of the
performance of CF algorithms, and other methods have been proposed [14]. In par-
ticular, little work has been done at understanding why one method may outper-
form another. For example, why does trust perform better than similarity with small
neighbourhoods, but loses its advantage over similarity when neighbourhood sizes
are larger?

One aspect that influences the accuracy of generated recommendations is the par-
ticipation of recommenders. In other words, when the neighbourhood k is restricted
to a specific value x (such as 5), does that mean that all predictions are made with
x opinions? We show the result for k = 5 in Table 5. For each method we report
the total number of predictions that were possible along with the individual number
of predictions that were made using a varying number of opinions. We preferred
using the actual values rather than proportions due to the the very low values found
in the trust-learning method. As is visible in the table, restricting a user’s neigh-
bourhood in kNN methods does not guarantee that each prediction will be made
using k opinions; on the contrary, the number of opinions used will vary. Only a
very small proportion, about 1,500 of between 14 and 16,000 predictions, are made
using contributions from the full neighbourhood. The alternative strategy adopted
by our trust-learning method, kNR, guarantees that nearly all predictions will be
made using the specified number of opinions. This may account for the improved
accuracy that we measured.

However, this characteristic may also be the downfall of the trust-based method
as neighbourhood sizes increase. In Table 6, we collected the same participation re-
sults for k = 100. Once again, the trust method includes a significantly larger number

12 Neal Lathia, Stephen Hailes, Licia Capra

Method X-MAE Covered (%)
trust kNN 0.8785 67.54
trust kNR 0.9191 99.84
trust kNR-T 0.8705 99.84
trust kNR-TO 0.8301 65.4
trust kNR-TOP 0.8182 59.24
trust kNR-TOPB (0.5) 0.8177 59.03

Table 7 MovieLens u1 Subset Results, k = 1

of opinions within its predicted ratings. To do so, it must include information from
neighbours that it has a minimal, near-negligible history of interactions with. Rat-
ings will therefore be difficult to interpret, or transpose correctly, and the rating will
diminish the value of the predicted rating.

This sort of analysis begs the question as to whether k recommendations are
necessary when making each prediction. It thus questions what the added value of
each opinion will be to the specific prediction (rather than the considerations of
value done in Section 2.1), and whether this added value can be computed when
making the prediction. We leave this matter for future work.

4 Trust Results Summary

In this work we have outlined a number of techniques for performing CF from the
point of view of a trust-management problem, including the kNR strategy, learning
trust by evaluating recommender’s value, and transposing (T) recommender’s rat-
ings by learning to interpret their opinions. The results we reported above explore
the predictive performance of a trust-based CF algorithm when all of these compo-
nents have been implemented. In this section we will take a brief look at how each
of these components influences the performance. As the results in Table 7 show,
the trust-learning method works relatively well with the kNN strategy. Changing to
kNR boosts the coverage to a maximum, forsaking some of the accuracy. Adding the
interpretation of recommender ratings (T), maintains the coverage while returning
the accuracy to the level we found at first. There are a number of further characteris-
tics that can be considered when generating recommendations, which we introduce
below. The main conclusion remains that each of these individual components can
be implemented separately; the decision should be based on the recommendation
context, or domain, and the user search mode [15].

Trust-Based Collaborative Filtering 13

4.1 Positive Opinions, Potential Recommenders, and Initial Trust

In this section we describe three additional characterisics of trust relationships that
can be applied to CF; each of them exerts its own influence on the accuracy and
coverage performance metrics, and is included in Table 7.

• O: Positive Opinions: One choice that can be applied to our k-NR strategy is
to limit the predictions that are made to those that include at least one positive
opinion. The reason for this is that, while the goal of CF is to predict ratings
accurately, in order to rank items and then decide whether to recommend the
item to the user or not, recommender systems in general are more interested
in finding the items that users like, or rather, ones that they would also have a
positive opinion about. If predictions that do not include at least one positive
opinion are disregarded, and marked as uncovered, the accuracy increases at the
expense of prediction coverage.

• P: Potential Recommenders: Computing trust and similarity share a common
trait. Both are subject to the size of the profile of the current user; as it increases
the possible set of co-rated items with neighbours increases as well, and both trust
and similarity measures become more reliable. A further consideration would be
to reward trust to potential recommenders, by rewarding them with trust for items
they have rated that the current user has not. This is an attempt to capture how
much “knowledge” the neighbour’s profile contains, and pair this with the value
judgements that are computed on shared opinions. In Table 7, the reward value
was set to 0.1.

• B: Initial Trust: The computation of trust we have described thus far requires
the user to have rated items in order to find valuable neighbours. If the user has
no such ratings, no predictions can be made at all, and the cold-start problem
appears. This problem can be side stepped if users are allowed to set initial trust
values in others [16], or trust values are set to an inital constant. How much
should a principal trust another if they have never interacted before, or if the
current user has no profile? This is a question of trust bootstrapping, a non-trivial
problem that has been studied extensively [17] that is beyond the scope of our
work here. Limiting ourselves to bootstrapping trust values in all neighbors to an
initial value β , which will then be molded by the measures of value found as the
user’s profile grows requires a small modification of Equation 3:

trust(a,b,n) =
β +Σ n

i=0value(a,b, i)
n+1

(7)

In terms of how this affects recommendations, the initial predictions that a system
will be able to make (based on no historical profile) will be the same as items’
reputation, since all neighbours will have equal weighting. Recommendations
will become more accurate as the number of ratings the user inputs grows, trust
values become more reliable, and the risk engine, as will be explored in Section
2.3, can operate more effectively. Table 7 reflects an experiment done with β =
0.5.

14 Neal Lathia, Stephen Hailes, Licia Capra

5 Related Work

Computational trust is a topic that is experiencing a rising influence in the field of
recommender systems. Not only does it provide an interesting metaphor that can
be used to explain the implicit interactions that occur as CF algorithms operate, but
also suggests methods that can improve on the work that has been done to date.
Trust, however, is applicable to different aspects of recommender systems. In this
short review we focus on the influence of trust on the algorithm deriving predicted
ratings, and not, for example, on the interactions between users and the interface to
the recommender system.

Amongst the first applications of trust to CF is the work done by Massa et al
[16]; in order to overcome problems that arise from similarity measures, which re-
quire co-rated items in order to function, users can be asked to input trust values
in other users. This method is particularly useful if a trust propagation algorithm
is also implemented, and allows both the breadth and accuracy of predicted ratings
to improve. Our work differs from [16] by performing trust evaluations based on
computed added value, rather than pushing the decision to the end users, a scenario
that may be more appropriate when user profiles need to are restricted in the interest
of privacy. We also did not include trust propagation as we assume a centralised
domain, where the user-rating matrix is available for complete analysis.

The trust-learning method that we propose more closely resembles the work done
by O’Donovan and Smyth in [14]; they define a recommender’s rating to be correct
if the difference between it and the user’s rating is less than a threshold value. Cor-
rectness is defined as a binary value, and, in doing so, begins to return to the domain
of similarity. Our trust-learning method rewards sources of information, regardless
of the opinion that was expressed, in order to differentiate between trustworthy rec-
ommenders (sources) and opinions (transposed ratings).

Trust has also been explored in decentralised recommender systems [18, 19]. As
above, similarity relationsips can be viewed as a limited instance of trust relation-
ships, thus allowing trust to be propagated over networks and then reconverted into
similarity in order to reduce data sparsity. [18] extends this work, exploring whether
trust models can be feasibly implemented in these systems, observing the effect of
the trust model on bandwith usage, response time, and on user’s patience.

All these solutions, however, focus on profile similarity. Our approach to the
problem moves away from similarity by considering trust as a question of value
rather than similarity. All users learn who their trusted recommenders are, and at dif-
ferent points in time they will have both varying levels of information with regards to
their community. This idea deviates from the traditional assumption of similarity-
based user interaction, towards encompassing further requirements of successful
interaction, such as information sharing and honesty, into the recommendation pro-
cess.

It is important to note that the implementations of trust in CF contexts are parallel
to work being done by the clustering community, which include many interesting
techniques that aim towards the same goals we stated above: finding a subset of the
community of users that are the “appropriate” ones. Work such as [20] describes

Trust-Based Collaborative Filtering 15

clustering from the perspective of message-passing, performing clustering by imi-
tating the way people group together around common interests. Although lacking in
the language used within trust-management research, these fields of work can offer
a wide variety of important techniques that are equally applicable using the trust
metaphor of CF.

6 Conclusion

In this work we have addressed the problem of learning how much to trust rating
information that is received from other users in a recommender system. We thus
transform the formation of predicted ratings from “how did similar users to me rate
this item?” to “how much do those I trust like this item, and how should I interpret
their opinion?” The results we have achieved not only offer a means for CF to be
performed successfully under a new trust-based metaphor and perform within sim-
ilar ranges of similarity-based methods, but offer novel ways of interpreting profile
data when generating predicted ratings. Constructing a CF algorithm based on trust
will thus include similarity as an emergent property of trust relationships, but not
the cause of it. The performance of CF algorithms are known to be subjective to the
dataset that they operate on; the contribution of this work can only be further val-
idated by experimenting with more datasets. In particular, the optimal initial trust
may vary between datasets, and designing a means of learning what this value is
would be a great advantage.

The trust-based perspective and methodology also reduces the vulnerability that
CF has to profile injection attacks; inserting a profile of ratings would not affect a
target user’s trust values in others unless the inserted ratings cover items that the
target user has yet to rate. This is due to the fact that building trust relationships in-
herently includes a temporal component, and thus only users who have input ratings
for an item prior to the active user inputting the rating will be considered for trust
updates. Therefore an attacker can only target users who have yet to rate the items
that meet the injected profile. It is possible to mimic this scenario in a controlled,
experimental set up, but makes attacks much harder to design in the broader settings
of online recommender systems. Our evaluation at this point has also implicitly as-
sumed that all the users who are participating in the CF environment will not alter
it or try to “game” the system in any way. Our future work will focus on removing
these assumptions and observing the effect that these new scenarios will have on the
recommendation process. Since we have defined interactions in this work on a user-
pair basis, a malicious node can still attack each user in the system before all will
have lost their trust in it. This entails defining suitable attack models for these kind
of systems, and methods for users to defend themselves from malicious peers, by
propagating trust values throughout the community, such as in techniques provided
in [17].

16 Neal Lathia, Stephen Hailes, Licia Capra

References

1. J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering recom-
mender systems. In ACM Transactions on Information Systems, volume 22, pages 5–53. ACM
Press, 2004.

2. M. Carbone, M. Nielsen, and V. Sassone. A formal model for trust in dynamic networks. In In
Proceedings of Int. Conference on Software Engineering and Formal Methods, (SEFM), 2003.

3. Daniele Quercia, Manish Lad, Stephen Hailes, Licia Capra, and Saleem Bhatti. Strudel: Sup-
porting trust in the dynamic establishment of peering coalitions. In Proceedings of the 21st

ACM Symposium on Applied Computing, pages 1870–1874, Dijon, France, April 2006.
4. L. Yan, S. Hailes, and L. Capra. Analysis of packet relaying models and incentive strategies in

wireless ad hoc networks with game theory. In Proc. IEEE 22nd International Conference on
Advanced Information Networking and Applications (AINA08), GinoWan, Okinawa, Japan,
March 2008. IEE Computer Society.

5. J.B. Schafer, J. Konstan, and J. Riedl. Recommender systems in e-commerce. In Proceedings
of the ACM Conference on Electronic Commerce, 1999.

6. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An Algorithmic Framework for
Performing Collaborative Filtering. In Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 230–237,
1999.

7. G. Linden, B. Smith, and Y. York. Amazon.com recommendations: Item-to-item collaborative
filtering. In IEEE Internet Computing, pages 76–80, 2003.

8. N. Lathia, S. Hailes, and L. Capra. The effect of correlation coefficients on communities of
recommenders. In To Appear in ACM SAC TRECK, 2008.

9. R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In
Proceedings of the 13th international conference on World Wide Web, pages 403–412, 2004.

10. K. Crammer and Y. Singer. Pranking with ranking. In Proceedings of the Conference on
Neural Information Processing Systems (NIPS), 2001.

11. R. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood in-
terpolation weights. In IEEE International Conference on Data Mining (ICDM’07). IEEE,
2007.

12. A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In Proceedings of
the 33rd International Conference on System Sciences, Hawaii, USA, 2000.

13. A. Agresti and L. Winner. Evaluating agreement and disagreement among movie reviewers.
In Chance, volume 10, 1997.

14. J. O’Donovan and B. Smyth. Trust in recommender systems. In IUI ’05: Proceedings of
the 10th international conference on Intelligent user interfaces, pages 167–174. ACM Press,
2005.

15. I. Im and A. Hars. Does a one-size recommendation system fit all? the effectiveness of collab-
orative filtering based recommendation systems across different domains and search modes.
In ACM Transactions on Information Systems (TOIS), volume 26, November 2007.

16. P. Massa and P. Avesani. Trust-aware recommender systems. In Proceedings of Recommender
Systems (RecSys), 2007.

17. D. Quercia, S. Hailes, and L. Capra. Lightweight distributed trust propagation. In Proceedings
of the 7th IEEE International Conference on Data Mining, Omaha, US, October 2007.

18. G. Pitsilis and L. Marshall. A trust-enabled p2p recommender system. In Proceedings of the
15th IEEE International Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, pages 59–64. IEEE, 2006.

19. G. Pitsilis and L. Marshall. Trust as a Key to Improving Recommendation Systems, Trust
Management, pages 210–223. Springer Berlin / Heidelberg, 2005.

20. H. Geng, X. Deng, and H. Ali. A new clustering algorithm using message passing and its
applications in analyzing microarray data. In Proceedings of the Fourth International Confer-
ence on Machine Learning and Applications, 2005.

