
Service-oriented Modelling for e-Business Applications Components

Giacomo Piccinelli and Mathias Sal16
Hewlett-Packard Laboratories

Bristol (UK)
(Giacomo-Piccinelli, Mathias-Salle} @ HP. com

Abstract

The emerging trends for e-business engineering revolve
around specialisation and cooperation. Successful
companies focus on their core competences, and rely on a
network of business partners for the support services
required to compose a comprehensive offer for their
customers. Modulariy is crucial for a flexible e-business
infrastructure, but related requirements seldom reflect on
the design and operational models of business
information systems.

Software components are widely used for the
implementation of e-business applications, with proved
benefits in terms of system development and maintenance.
We propose a service-oriented componentisation of e-
business systems as a way to close the gap with the
business models they support. Blurring the distinction
between external services and internal capabilities, we
propose a homogeneous model for the definition of e-
business applications components. After a brief
discussion on the foundational aspects of the approach,
we present the process-based technique we adopted for
component modelling. We then present an infrastructure
compliant with the model proposed that we built on top of
an EJB (Enterprise Java Beans) platform.

1. Introduction

E-business has certainly attracted a lot of attention from
software vendors, system integrators, solution providers,
and ultimately from businesses. The traditional idea of e-
business revolves around offering to customers, suppliers,
and business partners the capability to automate their
interaction with the sales or procurement department of a
company. The Internet acts as an additional channel,
offering unprecedented possibilities to businesses in
terms of speed and automation for interaction processes.
The e-service model [4] builds on the power of existing e-
business capabilities, and extends it with the aim of
making the Internet a pervasive reality into businesses.

In the e-service model, any type of asset can be
engineered and presented as a service to potential users
inside and outside the boundaries of a company. The

0-7695-1269-0101 1$10.00 0 2001 IEEE 12

Christian Zirpins
Distributed Systems Group- VSYS

University of Hamburg, Hamburg (Germany)
zirpins @ informatik.uni-hamburg.de

encapsulation of specific sets of business capabilities into
well-defined service modules improves internal
management and execution. Modularity helps localise
points of weakness, over sizing, under sizing, and
integration problems with other parts of the business
infrastructure [12). Modularity enables the outsourcing of
specific business activities, as well as the external offer of
excess capacity. The combination of the e-services model
and enabling business infrastructures like electronic
marketplaces gives a dynamic angle to internalisation and
externalisation of service components. The focus shifts
from the connection to a specific business partner, to the
definition of a specific business need. The link with the
business partner offering the best conditions for a service,
at every point in time can be built exploiting the
aggregation power of open electronic marketplaces [I] .

After a brief overview on the e-service vision, we
present a component model for e-business applications
based on the concept of service modules. We first
describe the process-oriented approach we took to service
specification. We then present the EJB-based (Enterprise
Java Beans) prototype for an application platform based
on service modules.

2. E-Services Vision

Until recently, the Internet was about the creation of e-
business and e-commerce systems, and it was dominated
by web sites and storefronts. We have now entered the
next Internet evolution: the proliferation of e-services. E-
services are modular, nimble, electronic services that
perform work, achieve tasks, or complete transactions [4].
Almost any asset can be turned into an e-service and
offered efficiently via the Internet to drive new revenue
streams. Chapter 1 of the Internet was about businesses
getting wired to their employees, customers and partners;
key business processes getting linked to the Internet, and
a critical mass of consumers coming online.

Chapter 1 was about the creation of e-business and e-
commerce systems that form a critical foundation.
Businesses were learning how to use what looked like a
promising new tool. Now, the Internet is ready for its next
evolution. It won't be about businesses looking at the web
as a technology. Internet has been absorbed into the core
business infrastructure, and businesses are ready to

http://informatik.uni-hamburg.de

capitalise on this new asset. Chapter 2 of the Internet will
be about the mass proliferation of e-services.

These services will be modular units that combine and
recombine to solve problems, complete transactions, and
make life easier. Some will be available on web sites, but
others will be delivered via TV, phone, pager, car, email
in-box, or virtually anything with a microchip in it. Some
will even operate behind the scenes, automatically
working on behalf of consumers and providers.

A definition: an e-service is any asset that is made
available via the Internet to drive new revenue streams o r
create new efficiencies.

In Chapter 2 , successful companies will be those that
determine how to turn their assets into services delivered
via the Internet. Successful companies will adopt an
entrepreneurial approach to looking at their assets
figuring out how to best leverage not only their core
business offerings, but also their proprietary processes,
data, relationships, knowledge, experience. In Chapter 2,
we will see more companies turn these assets into
services and offer them via the Internet.

3. Use context for service components

The first step to turn an existing asset or service into an
e-service revolves around accessibility. The electronic
virtualisation of the service has to provide communication
channels that support automated conversational
capabilities. Automation is fundamental at each step of
the service delivery chain. Beyond the basic capability to
exchange electronic messages using standard protocols on
top of an XML transport, the business logic behind the
service provision and partner interaction has to be
enforced. For example, the service offer has to be
presented in a way that allows automated discovery to
take place. The service description should enable
advanced offer-request matching (beyond the basic
pricing), as well as automated negotiation on contractual
terms and parameters. The role of advanced directory
services (e.g. UDDI), and in particular of electronic
marketplaces is fundamental. An e-service is not a
standalone entity; rather it is a first-class citizen of a
highly dynamic ecosystem enabled by e-marketplaces.

The second step towards the realisation of the full
potential for the e-service vision focuses on composition
and interaction orchestration. Beyond business
conversations for point interactions [3] , an e-service has
to expose all the interaction processes involved in the
service delivery. Far from saying that a company should
expose its core competences, the requirement is to handle
the internal and external business networks dynamically
created by each and every instance of service delivery
[10, 1 I]. A service delivery may no longer be a one-to-

one (buyer-to-seller) relationship. As an example, let us
assume that the company iBuild has selected the company
iMove for a shipment contract. The final product of
iBuild may be packaged by a company iPack, and iBuild
may want iMove to interact with iPack for arranging the
logistics behind collecting the goods. Similarly, iMove
operational structure may be such that it focuses on hub-
to-hub transport using lorries, and it relies on partners for
the hub-to-customer transport. In the case of the service
sold to iBuild, iMove may select (directly or using an e-
marketplace) a company iVan to .do the first leg of
transport. As a consequence, Nan has to synchronise
with iBuild and iPack. The end customer will still be
iBuild in the same way as the overall responsibility for
the end-to-end transport will still be on iMove, as far as
both iBuild and iMove are concerned. The thing to
observe is how in the scope of a specific instance of
service delivery, multiple parties are dynamically pulled
together. Some of them know, some of the others, but in
some cases (e.g. iVan) the service providers might not
have had previous relationships. From an operational
point of view, an e-service should be able to cooperate
with a dynamically selected mix of other e-services. This
imply the capability to automatically verify the
behavioural compatibility of the various execution
processes, as well as the capability to adapt them (within
feasibility boundaries) in order to make cooperation
possible.

From a technology perspective, there is a proliferation
of initiatives in the industry and within standard bodies
aimed at better exploiting the potential that the Internet
has for businesses. Leveraging these efforts, HP is
promoting a comprehensive framework oriented towards
making the e-service vision become a reality. The ability
to expose services in a way that they can be automatically
visible and accessible to potential customers is the focus
of this service framework specification (SFS [4]). The
work described in the next sections of this paper is based
on such framework. The SFS defines standard business
and technical conventions that allow e-services to
dynamically interact with each other.

4. A model for service components

The model we propose for service components is based
on the ideas of functional incompleteness, multi-party
orchestration, and dynamic service composition [6, 91. A
service can be partially incomplete in terms of its
implementation. Meta-information present in the
electronic virtualisation layer for the service specifies the
kind of support services needed, as well as the type of
integration required to become fully functional. For an e-
service, the focus moves from the access logic to the
integration logic. The challenge for both service providers

13

and service consumers is to adopt an integration model
based on business roles and behavioural descriptions.

..._ -.................

Figure 1 : Process-based interaction

In a business transaction, the service consumer has to
be informed about the kind of interaction process
supported by the service provider. The idea is to expose
the service delivery process as early as possible, so that
both service consumer and service provider can better
evaluate their operational compatibility. The impact of e-
services on the design for e-business systems is captured
in Figure 1 . Existing systems are developed around
object-oriented models, and different functions are
isolated into different parts of the system. The problem is
(Figure la) that different functional modules are
hardwired to each other in an ad-hoc way. The idea is
instead to move to a scenario (Figure lb) in which
different functional modules are kept separate. The
interaction logic (Figure I C) behind what then become
service units is captured explicitly, and the distinction
between internal and external service components is
blurred.

Assuming a service offer organised around this model,
the operational structure of the service itself can be
designed with a new approach. First the need for specific
support services is identified. Next the expected
interaction processes with the potential service providers
is identified. A specific service instance is available, only
if the adequate support services can be found. The
concept of adequacy is heavily based on operational
compatibility, in order to ensure a smooth execution of
the overall service. The implications on cost and
availability are significant. The provider for an e-service
component can focus on the implementation of the core
aspects of the service. The e-service infrastructure will
take care of the integration with the most suitable e-
services to completely enable the new e-service.
Integration logic coexists with business logic, still
remaining two separate entities in terms of management
and visibility.

5. E-Service Bean

As an implementation example of the component
model proposed, we instrumented an EJB (Enterprise
Java Beans [7]) platform with process-oriented
componentisation capabilities [3, 51. The work revolved
around the implementation of a new type of EJB
container, within which an XML-based process
description file [2] can be used to model the observable
behaviour of the bean. Clients and other beans will only
be able to execute methods on a bean in this container if
they are consistent with the process description. The
outbound communication initiated by the bean is also
monitored for compliance with the behavioural interface
captured in the process. In line with the naming
conventions for EIB, we refer to the new container as
ESB (E-Service Bean).

<!DOCTYPE process-description [
<!ELEMENT process-description

roles,structure+)>
<!ELEMENT structure

type,elements,structure*,cons*)>
<!ELEMENT con

roles,method,exe_cons,exe-con*,ret-cons,ret-con*)>
<!ELEMENT exe-con

type,parameter,operator,value)>
<!ELEMENT ret-con

type,parameter,operator,value)>
<!ELEMENT roles (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT elements (#PCDATA)>
<!ELEMENT cons (#PCDATA)>
<!ELEMENT ret-cons (#PCDATA)>
<!ELEMENT exe-cons (#PCDATA)>
<!ELEMENT parameter (#PCDATA)>
<!ELEMENT operator (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT method (#PCDATA)>

I >

Figure 2: DTD for the Process Description Language

A bean models a service unit, and the process
description captures the service delivery process deriving
from the external interaction of the bean (Figure 2).
Different roles can be involved in the delivery process
behind the service implementation. The ESB container
manages at run-time the behaviour of the entities playing
these roles. When a bean is created, the roles involved can
be partitioned into groups and assigned transparently to
either client programs or other beans. The only interaction
allowed is the one deriving from the process description
(both inbound and outbound). The aim of our prototype
was to implement a basic container that demonstrates this
kind of protection for the beans. The container in which
service beans are to be deployed has the following
features not found in normal EJB containers:

14

The bean provider can. specify the service behaviour
in a process description file (using XML) that is then
enforced by the container. This means that the
container will generate exceptions whenever a
method is called in an incorrect way (at the wrong
point in the process or with invalid parameters).
Exceptions will also be generated in cases where a
service bean invokes a method on another service
bean that does not comply with the specified
behaviour.
A process can be specified to have a number of roles
that can be played (Figure 2) . Clients can create a
bean, specifying the role(s) they want to play, or
contact an existing bean to have a role/roles assigned
to them. The container makes sure that a service
cannot be started until all roles are assigned.
The client can request role specific descriptions from
a service bean to see what is required to do as the
entity responsible for a specific role/roles.
The system makes the state of each service instance
persistent so that everything can be reconstructed in
the event of a system crash.

The tasks performed by the system can be divided into
two parts [7]. The first part is the creation of the home
and remote object classes. The second part is the actual
runtime handling of the beans, where the home objects
are made available via JNDI allowing them to be created
and used. The following sections describe the two parts of
the container and how they function.

5.1 Creating the Home and Remote Objects

The JAR file containing the interfaces, process
description and deployment descriptor are placed in the
hpcon\jurs\ subdirectory of the container installation
directory. The deploy batch file is then executed with the
location of the JAR file as the first argument and the
name of the bean of the second argument e.g. deploy
C:Vipcon\jars\Cubin.jar Cabin. The container then reads
the manifest of the JAR file, finding the deployment
descriptor.

The deployment descriptor contains information on the
persistent fields of the bean and whether the bean
contains references to other service beans. If the bean
does contain such references, then any method
invocations made using the references will be checked
also against their behaviour specification. Once the
information in the deployment descriptor has been read,
the container can generate home and remote object
classes. The home object is used by clients to create beans
(partitioning the roles to be played into groups), request
group specific remote objects, find remote objects, and
destroy beans. The remote object is used by the client to
make method calls on the bean. The deploy batch file then

creates an instance of the home object which makes itself
available via JNDI for clients to contact it.

Figure 3: Service model for the
U

Travel Agent bean

5.2 Runtime Handling of the Beans

The second part of the EJB containers work involves
making the home object available to clients and
monitoring the use of the bean object via the home and
remote objects. The home class contains a constructor
allowing a home object to be created from the command
line. Once the home object is created it binds itself to the
RMI Registry and makes itself available via JNDI.
Remote interaction between the client and the container
takes place via Java RMI [8]. The JNDI RMI standard
extension is used so that the client can lookup home
objects via JNDI.

The client creating a service bean can dynamically
partition the roles to be played by clients into groups.
Each client plays a specific group of roles, and it receives
a remote object used to call methods on the bean. The
client that creates the service bean gets a remote object
for the first group of roles to be played. The other clients
are assigned groups using the assign method in the
home object. A processutility object is instantiated
by the home object when a service bean is created. When
the processutility object is constructed, it checks
with the process description that the grouping of the roles
i t has been given by the home is correct. If the grouping is
valid, an entry in the database for that type of bean is
created. The remote object then uses the
processutility object to check the validity of method
calls. The persistent fields of the service bean are written
to the database after each valid method invocation by the
processutility object.

The remote objects can catch method invocations and
return types to check that they are consistent with the
process description. If they are not, a specific exception is
thrown. The remote objects can also be used to catch
outgoing calls from a bean. When a method invocation is
made on the EJB remote object by the client, the remote
object calls the check-method method of the
processutility object. This method uses the process
description file to check if the method call (including the
parameters) is valid. If the method call is not valid, the

15

result returned to the remote object contains specific error as along with other control information to the
codes. The remote object therefore makes the method call check-return method of the processutility for
on the actual bean if no error code was returned. When final controls. The result is then returned to the client.
the return value is received from the method call, it i s sent

Figure 4: Component interaction mediated by ESB containers

6. Use example for the ESB container

The activity of the ESB container is illustrated in a
scenario consisting of three very simple service beans, the
Travel Agent bean, the Airline bean and the Hotel bean.
The scenario shows the impact of external management
on the interaction behaviour of the various components.

In the scenario (Figure 4), a client first interacts with
the travel agent to list holiday deals. The client books a
deal, and then cancels the deal. Everything is coherent
with the behavioural model specified by the travel agent.
When the client books a deal, the travel agent interacts
with an airline and a hotel to book a flight and a hotel
room for that holiday. The client can directly refer to the
same airline to request information on a "special deals",
which are budget flights with a price of less than E300.
Though it is one of the methods exposed be the airline,
the client is instead not allowed to do direct booking with
the airline. When the client attempts the booking, the
incompatibility between request and behavioural
specification for the service is detected and the request
rejected.

The behavioural interface of the travel agent bean
(Figure 3) specifies that this bean can be created and used
by one entity only, which means there is only one free
role available to be played. In the animation of our
scenario, the client plays this role. Once an instance of the
travel agent bean is created, the client can invoke only the
list-deals method. Once the list has been requested,
a deal can be booked using the book-deal method.
When the booking is requested, the travel agent bean calls
the book-f light method of the airline bean and then
the book-room method of the hotel bean. The client is
now allowed to cancel the deal by calling the
cancel-deal method. The ESB container prevents
other method invocations from reaching the beans, as
they do not conform to the specified behaviour of the
components.

The Airline bean behavioural interface specifies two
free roles, one of which will be played by the client and
the other by the Travel Agent bean. The role played by
the client will allow only one method to be invoked, the
special-deals method, which must return an integer
less than 300. The role played by the travel agent allows
the invocation of the book-f light method. The Hotel

16

bean has only one free role, which is played by the Travel
Agent and can be used to book rooms.

Figure 4 shows a basic client console and the monitor
interface for the beans. The snapshot is taken immediately
after the container has trapped a method invocation for
the booking attempt from the customer to the airline. In
this case the client has tried to invoke the
book-flight method of the Airline bean, which is not
available within the role the client is playing. The Airline
bean is automatically shielded from the illegal request by
the ESB container. Previous to the intercepted method
invocations, the client called the 1 i s t-deals .

*

7. Conclusions

E-business models often focus on the flexibility of the
service offer. The capability to acquire efficiently the
external resources required to satisfy specific demands is
important, and electronic marketplaces play a key role in
this process. Still, the quality and profitability of the
service offer depends on the effective integration of
external resources with internal business infrastructure.
We propose that a service-oriented modularisation of e-
business systems could reduce the gap between internal
and external components behind a service
implementation.

Based on the e-service vision, we propose a process-
oriented model for the operational description of service
components. Together with the foundational aspects of
our proposal, in this paper we present a prototype
infrastructure that instruments an EJB-platform
(Enterprise Java Beans) with capabilities for the
definition and implementation of e-service components.

8: References

[11 Blodget H. and McCabe E. “The B2B market maker book”
Merrill Lynch & Co., 2000.

[2] Cagle K. “ X M L developer’s handbook” Sybex, 2000.

[3] FIPA (2000) Foundation for Intelligent Physical Agents.
http://www.fipa.org

[4] Hewlett-Packard (HP, 1999) “E-Services” http://e-
services.hp.com

[5] Holligsworth D. “The workflow reference model”.
Workflow Management Coalition (WfMC), TC00-1003, 1994.

[6] Marton A., Piccinelli G . and Turfin C. “Service provision
and composition in virtual business communities”. Proc. 1 81h
IEEE - ISRDS, Int. Workshop on Electronic Commerce.
Lausanne, Switzerland, 1999.

[7] Monson-Haefel R. “Enterprise Java Beans” O’Reilly, 1999.

[8] Orfali R. and Harkey D. “C/ient/Server programming with
Java and CORBA” Jon Wiley & Sons, 1997.

[9] Piccinelli G . and Lynden S. “Concepts and Tools for E-
Service development”. Proc. 7Ih International Workshop HP
OVUA, Santorini, Greece, 2000.

[I O] Reilly B. and Block J . “Nexf-generation E-Commerce
processes and sysrems” Electronic Commerce Strategies Report,
GartnerGroup, 1997.

[1 I] RosettaNet “RosetfaNet” http://www.rosettanet.org

[121 Schwartz D.G.
Kluwer Academc Publisher, 1995.

“Cooperating Heterogeneous Systems”.

17

http://www.fipa.org
http://e
http://services.hp.com
http://www.rosettanet.org

