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Abstract

Cell-cell adhesion regulates the development and function of epithelia by providing mechanical support and by guiding cell
proliferation and differentiation. The tight junction (TJ) protein zonula occludens (ZO)-1 regulates cell proliferation and gene
expression by inhibiting the activity of the Y-box transcription factor ZONAB in cultured epithelial cells. We investigated the
role of this TJ-associated signalling pathway in the retinal pigment epithelium (RPE) in vivo by lentivirally-mediated
overexpression of ZONAB, and knockdown of its cellular inhibitor ZO-1. Both overexpression of ZONAB or knockdown of
ZO-1 resulted in increased RPE proliferation, and induced ultrastructural changes of an epithelial-mesenchymal transition
(EMT)-like phenotype. Electron microscopy analysis revealed that transduced RPE monolayers were disorganised with
increased pyknosis and monolayer breaks, correlating with increased expression of several EMT markers. Moreover,
fluorescein angiography analysis demonstrated that the increased proliferation and EMT-like phenotype induced by
overexpression of ZONAB or downregulation of ZO-1 resulted in RPE dysfunction. These findings demonstrate that ZO-1
and ZONAB are critical for differentiation and homeostasis of the RPE monolayer and may be involved in RPE disorders such
as proliferative vitroretinopathy and atrophic age-related macular degeneration.
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Introduction

Retinal function is dependent on the retinal pigment epithelium

(RPE), which is a monolayer of tightly connected pigmented cells

underlying the photoreceptor cell layer. RPE cells not only support

the function of photoreceptors, they also form the outer blood-

retinal barrier (BRB) that prevents fluid from choroidal vessels

from entering the retina [1,2]. Breakdown of the BRB can lead to

visual loss in a number of ocular disorders. However, the molecu-

lar mechanisms underlying RPE homeostasis are not completely

understood.

Cell-cell adhesion plays a key role in epithelial cell function and

several junctional components are dual localisation proteins, called

NACos (Nucleus and Adhesion Complexes proteins), that play a

role in signalling to the nucleus, cell proliferation and differenti-

ation [3]. Tight junctions (TJs) are a type of cell-cell adhesion that

have a fundamental role for the BRB function because they

regulate paracellular diffusion across epithelia [4]. They also

separate apical and lateral membrane components, and take part

in signalling pathways involved in epithelial proliferation, gene

expression and differentiation [5,6]. ZO-1 is a membrane-

associated TJ adaptor protein that links junctional membrane

proteins to the cytoskeleton and signalling plaque proteins [7].

ZONAB (ZO-1-associated nucleic-acid-binding protein) is a Y-box

transcription factor that binds to the SH3 domain of ZO-1.

Binding of ZONAB to ZO-1 results in cytoplasmic sequestration

and, hence, inhibition of ZONAB transcriptional activity [5,6].

ZONAB interacts with the cell cycle kinase cdk4 and regulates the

transcription of cell cycle genes such as cyclin D1 and PCNA,

providing a molecular explanation for the role of ZO-1/ZONAB

pathway in regulating proliferation of epithelia cells in culture

[8,9,10]. Little is known about the role of ZO-1 and ZONAB in

vivo. Nuclear translocation of ZONAB correlates with increased

proliferation in the colonic epithelium of ethanol-fed mice and in

adenomas of chronic alcoholics, suggesting a possible involvement

in alcohol-induced gastrointestinal transformation [11]. ZONAB

also seems to negatively regulate goblet cell differentiation, acting

by suppressing AML1 and KLF4 [12]. During mouse kidney
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ontogeny, ZONAB expression decreased and inversely correlated

with increasing apical differentiation, reflected by maturation of

the brush border and extension of the primary cilium [13]. Thus,

these studies suggest that decreased ZONAB expression correlates

with differentiation. However, the effect of ZONAB overexpres-

sion on differentiation has not been shown yet in vivo.

During the last decade, numerous studies have demonstrated

that the eye – and in particular the RPE – provides a valuable

model system for the evaluation of the effects of gene transfer using

viral vectors due to its easy accessibility [14,15,16]. Here, we

describe the use of HIV-based lentiviral vectors to manipulate the

expression of junctional signalling molecules in mouse RPE in vivo.

Our results demonstrate that lentiviral vectors are efficient tools to

regulate junctional proteins in vivo and indicate that ZO-1 and

ZONAB are important for RPE homeostasis as their deregulation

leads to changes in cell proliferation and morphology features of

epithelial-mesenchymal transition in vivo.

Materials and Methods

Constructs and vector production
The targeting construct for ZO-1 was created by sub-cloning

the target hairpins into the mU6pro plasmid and subsequent

cloning into the lentiviral pHR-SIN backbone as previously

described [10]. The resulting vector was named LNT.shZO-1.

The sense strand of the targeting hairpins was 59-AAGA-

TAGTTTGGCAGCAAGAG-39 for ZO-1. The LNT.shGFP

vector that targets humanised renilla green fluorescent protein

(hrGFP) expression was used as a control. Its sense strand of the

GFP-targeting hairpin was 59-GTTCATCTGCACCACCGGCA-

AGT-39. Lentiviral vectors expressing either ZONAB or hrGFP

were generated by using the GatewayH Cloning Kit (Invitrogen).

The cDNA was cloned between the LTRs of the lentiviral

backbone downstream of the ubiquitous active spleen focus-

forming virus (SFFV) promoter. The resulting vectors were named

LNT.ZONAB and LNT.hrGFP. Lentiviral production was

carried out as previously described [14].

Subretinal injections and angiography
Six to eight week old female wild-type C57BL/6 mice were used

for this study (n = 40). All animals were cared for in accordance

with the UK Home Office license (PPL 70/6956) with approval

from the Institute of Ophthalmology ethics committee. Mice were

anaesthetised by intraperitoneal injections of Dormitor (1 mg/ml,

Pfizer Pharmaceuticals, UK) and ketamine (100 mg/ml, Fort

Dodge Animal Health, UK) mixed with sterile water in the ratio

5:3:42. Surgery was performed under direct retinoscopy through

an operating microscope as described elsewhere [17]. Two ml of

virus suspension were injected to produce a bullous retinal

detachment in the superior and inferior hemisphere of each eye.

Where appropriate, 0.2 ml of a 100 ng/ml 5-bromo-2-deoxyur-

idine solution (BrdU; Sigma, UK) was injected intraperitoneally

following the subretinal vector administration and injections were

repeated daily for 5 days. For fluorescein angiography, 0.2 ml of

2% fluorescein sodium diluted in water was administered by

intraperitoneal injection five minutes after the induction of

anaesthesia. A Kowa Genesis small animal fundus camera

equipped with appropriate excitation and barrier filters was used

to obtain fluorescein angiograms at early (90 s after fluorescein

injection) and late (7 min) phases of dye transit. At the early phase,

the retinal vasculature is clearly defined by the intravascular

fluorescein dye. At the late phase, any extravascular leakage or

RPE loss is evident as patches of topical hyperfluorescence. Both

the superior and inferior hemispheres were individually photo-

graphed in rapid succession (within 15 s). The contralateral eye

was then immediately photographed.

Semithin, ultrathin and cryosections
Mice were sacrificed at various time points and the eyes were

immediately orientated with a nasal stitch. The eyes were fixed in

3% glutaraldehyde and 1% paraformaldehyde buffered to pH 7.4

with 0.07 M sodium cacodylate-HCl buffer, the cornea and lens

removed and the eye cups were processed as previously described

[16]. Semithin sections (0.7 mm) were cut using a Leica ultracut S

microtome fitted with a diamond knife (Diatome histoknife).

Sections were stained with 1% toluidine blue stain and slides were

mounted with DPX after the sections had dried. Ultrathin sections

(70 nm) were cut using a Leica ultracut S microtome fitted with a

diamond knife for ultrathin sections (Diatome histoknife for

ultrathin sections). Sections were taken of treated areas of retinae

and collected onto grids. Sections were stained with uranyl acetate

for 10 min and lead citrate for 7 min and then washed with

dH2O. After the sections had dried they were analysed by electron

microscopy (JEOL 1010 TEM). For cryosections, eyes were

retrieved and immediately immersed in 4% paraformaldehyde for

2 hr. After fixation the eyes were embedded and frozen in

optimum cutting temperature medium and 12 mm thick sections

were cut using a Bright cryostat.

Quantification of RPE features for each treatment group was

carried out on 20 retinal cryosections from 4 eyes (5 sections from

each eye). The presence of two features was assessed in each

section: RPE pyknosis and RPE breaks. A section was scored

positive for a feature if it occurred once or more on that section.

Thus, for each feature the maximum possible score was 20. The

percentage of sections scored positive for each feature was plotted.

Error bars indicate standard deviation of the mean between

different eyes.

Laser capture microdissection and RT-PCR
Cryosections (20 mm thick) from treated eyes (n = 4) were

collected on PEN-membrane coated slides NF 1.0 (ZEISS ltd.,

UK) and RPE cells were immediately collected using a PALM

Robomover Axiovert 200 miscroscope (ZEISS ltd., UK). Approx-

imately 100 RPE cells were laser-cut and catapulted into a silicon-

embeded AdhesiveCap eppendorf (ZEISS ltd., UK). Cells were

lysed immediately and total RNA extraction was performed using

the RNeasy MicroKit (Qiagen ltd., UK). Reverse transcription on

total mRNA lysates was performed using the QuantiTect Whole

Transcriptome Amplification kit (Qiagen ltd., UK) following the

manufacturer’s directions.

PCR reactions to assess EMT marker expression were performed on

amplified cDNAs using the following primers: GFAP (glial fibrillary

acidic protein) forward: 59-ACAGACTTTCTCCAACCTCCAG- 39.

GFAP reverse: 59-CCTTCTGACACGGATTGGT-39. Vimentin

forward: 59-TGCGAGAGAAATTGCAGGA-39. Vimentin reverse:

59-GTGCCAGAGAAGCATTGTCA-39. N-cad (N-Cadherin) for-

ward: 59-CCTCCATGTGCCGGATAG-39. N-cad reverse: 59-CAC-

CAGAAGCCTCCACAGAC-39. cD1 (cyclin D1) forward: 59-GAG-

ATTGTGCCATCCATGC-39. cD1 reverse: 59-CTCCTCTTCGC-

ACTTCTGCT-39. Snail1 forward: 59-GTCTGCACGACCTGTG-

GAA-39. Snail1 reverse: 59-CAGGAGAATGGCTTCTCACC-39.

CtBP1 (C-terminal binding protein 1) forward: 59-CCAGGATCCG-

TGGAGAGAC-39. CtBP1 reverse: 59-GGACGTTGAAGCCAAA-

AGC-39. a-SMA (alpha smooth muscle actin) forward: 59-CAA-

CCGGGAGAAAATGACC-39. a-SMA reverse: 59-CAGTTGTAC-

GTCCAGAGGCATA-39. Cyclic conditions were: 94uC for 30

seconds, 60uC for 1 min, repeated for 40 cycles.
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Immunohistochemistry
Cryosections were air-dried for 10 min and blocked for 1 hr

with a TBS-T solution containing 3% BSA, Triton-X (0.5%), and

5% serum of the species the 2u antibody was raised in. The 1u
antibodies directed against either ZO-1 (rabbit polyclonal, 4913,

1/200 dilution [8]), ZONAB (rabbit polyclonal, 5599, 1/500

dilution [8]), RPE65 (mouse monoclonal, Chemicon, UK, 1/500

dilution) or BrdU (rat monoclonal, Abcam, UK, 1/1000 dilution)

were then added and sections were incubated overnight at 4uC.

After washing with TBS-T, sections were incubated with the

respective 2u antibody in blocking solution (1/500 dilution) for

2 hr at room temperature. The sections were counterstained with

Hoechst 33342 (Sigma, UK) or propidium iodide (PI; Sigma, UK)

and mounted on mounting medium (DAKO). For BrdU

immunostaining, sections were pre-treated with 2 M HCl for

30 min at 37uC prior to the addition of the 1u antibody. The slides

were analysed using the 3-laser ZEISS LSM 510UV Confocal

Imager. Alternatively, sections were treated for haematoxylin and

eosin staining before capturing images with a Leica DC 500 digital

camera mounted on the microscope.

Quantification of BrdU positive cells was carried out on 20

retinal cryosections from 4 eyes per treatment group. Total RPE

cells were first counted per section (average total number of RPE

cells/section = 160) and each BrdU positive RPE cell was

subsequently counted. The percentage values account for the

average number of BrdU cells per treatment group towards the

average total number of RPE cells counted. Error bars indicate

standard deviation of the mean.

Results

In vivo RPE transduction
HIV-based lentiviral vectors can be used to mediate efficient

gene delivery specifically to the RPE [14]. We therefore generated

HIV-1–based vectors to manipulate the expression of the tight

junction associated proteins ZO-1 and ZONAB. ShRNAs

targeting ZO-1, or hrGFP were driven by a U6 RNA polymerase

III promoter and were based on sequences previously used to

downregulate ZO-1 in cultured cells [10]. Vectors for ZONAB

and hrGFP overexpression used a spleen-focus forming virus

(SFFV) promoter to drive expression of the respective cDNAs.

We first assessed transduction levels using serial dilutions of

LNT.hrGFP. Wild-type (wt) mice (n = 12) were subretinally

injected and transgene expression within the treated area was

analysed two weeks post injection (p.i.). Transduction of the entire

RPE monolayer was observed following injection of a titre of 108

transducing units/ml (T.U./ml) (Fig. 1A, B). Injection of a titre of

107 T.U./ml resulted in discontinuous transduction of the RPE

monolayer (Fig. 1C, D). At 106 T.U./ml, minimal RPE transduc-

tion was observed with expression of hrGFP by the occasional

RPE cell (Fig. 1E, F). No GFP expression was evident after

injection of vector at a titre of 105 T.U./ml (data not shown). Even

at the highest titre, GFP expression was only observed in RPE

cells, supporting the specificity of the viral vector [14]. Similar

levels of GFP expression as well as RPE specificity were observed

at 5, 10, 30 and 60 days post injection (data not shown).

In order to assess the role of ZO-1 and ZONAB in RPE cells we

used lentiviral vectors expressing ZONAB or shRNAs (LNT.shZO-

1and LNT.shGFP) at two titres. A titre of 107 T.U./ml was effective

in altering protein expression and such manipulations correlated

with changes in cell proliferation. A titre of 108 T.U./ml resulted in

a more severe phenotype. Prior to the transduction experiments

described below, preliminary experiments were conducted in order

to identify the most appropriate time points for detailed analysis. We

observed knockdown and induction of proliferation after 5 days

whereas retinal degeneration was apparant at later time points

(at least 10 days post injection).

Manipulation of ZO-1 or ZONAB levels in RPE in vivo
We first tested the ability of the lentiviral vectors to alter the

levels of ZO-1 and ZONAB. Following injection of the control

LNT.shGFP virus in vivo, basal levels of ZONAB in RPE cells and

ZO-1 immunofluorescence at cell-cell junctions were observed

(Fig. 2A,B). Increased levels of ZONAB could be observed

following subretinal injection of LNT.ZONAB confirming the

integrity of the expression cassette (Fig. 2C). No change in ZO-1

immunostaining was observed after injection of LNT.ZONAB

(Fig. 2D), whilst a marked reduction was observed 5 days after

subretinal injection of LNT.shZO-1 (Fig. 2F). Unexpectedly,

slightly increased fluorescence of endogenous ZONAB staining

was observed in the LNT.shZO-1 treated eyes (Fig. 2E). These

results demonstrate that manipulation of ZONAB or ZO-1 levels

in RPE cells in vivo can be obtained using HIV-1-based lentiviral

vectors.

ZO-1 downregulation or ZONAB overexpression results in
increased RPE cell proliferation in vivo

ZO-1/ZONAB signalling controls G1/S phase transition and

differentiation of epithelial cells in culture [9,10]. We therefore

Figure 1. RPE transduction following subretinal delivery of
LNT.hrGFP. Retinal cryosections were obtained from eyes 14 days
after subretinal injection of LNT.hrGFP at titres of 108 T.U./ml (A, B),
107 T.U./ml (C, D) and 106 T.U./ml (E, F). Expression of GFP (green) was
restricted to the RPE (left panel). Propidium iodide (red) was used as a
nuclear counterstain (right panel, merged with GFP). White arrows, GFP-
positive cells. GCL, ganglion cell layer; IPL, inner plexiform layer; INL,
inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer;
IS, inner segments; OS, outer segments; RPE, retinal pigment
epithelium; Size bar, 20 mm. n = 4 per treatment group.
doi:10.1371/journal.pone.0015730.g001
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analysed RPE differentiation by testing the expression of an RPE-

specific marker, RPE65, five days after injection of LNT.shGFP,

LNT.ZONAB or LNT.shZO-1 [18]. Immunostaining of RPE65

in the RPE following injection of LNT.shGFP, LNT.ZONAB or

LNT.shZO-1 was not altered (Figure 3) indicating that after five

days transduced RPE cells retained their epithelial character.

In epithelial cell lines, ZONAB regulates proliferation by

stimulating G1/S phase progression while the postnatal RPE is

not proliferative [19]. We therefore tested whether manipulation

of ZONAB and ZO-1 expression in RPE in vivo affects cell cycle

entry using BrdU incorporation. Whereas injection of control virus

did not induce proliferation (Fig. 3B), proliferating cells were

detected in eyes following injection of either LNT.ZONAB

(Fig. 3D) or LNT.shZO-1 (Fig. 3F). We also quantified the

number of BrdU-positive cells following injection of the lentiviral

vectors (Fig. 4), confirming the induction of proliferation by

downregulation of ZO-1 and overexpression of ZONAB. Thus,

treatments that result in increased ZONAB activity, either by

direct overexpression or by downregulation of its inhibitor,

stimulate proliferation in RPE cells in vivo.

ZO-1 and ZONAB regulate RPE cell morphology and
differentiation in vivo

As manipulation of ZO-1 or ZONAB increases RPE cell

proliferation (Fig. 3D, F and 4), we next analysed changes in RPE

cell morphology and retinal integrity after manipulation of

ZONAB or ZO-1 by subretinal injection of vectors at titres of

107 and 108 T.U./ml (Fig. 5). Semithin sections of treated eyes

were analysed to determine morphological changes. Injection of

control virus did not affect the morphology of the RPE and the

neuroretina (Fig. 5A,D). Mild morphological changes were

observed after 5 days of subretinal injection of LNT-shZO-1 or

LNT-ZONAB vectors (Fig. 2 and 3). However, more pronounced

morphological changes were observed after 10 days of subretinal

injection of LNT-shZO-1 or LNT-ZONAB vectors (Fig. 5, 6 and

7). In general, a disrupted RPE monolayer and altered photo-

receptor morphology were observed. We observed two character-

istic structural changes of the RPE monolayers, such as pyknosis

and breaks. Pyknosis was identified and quantified as hyperpig-

mented RPE cells that do not adhere to the monolayer

conformation (Fig. 5E). Breaks were identified as discontinuities

in the RPE monolayer (Fig. 5F). Figure 6 shows the quantification

of such phenotypes. Photoreceptor outer segments appeared

disorganised and with extracellular gaps (Fig. 5C). Accumulation

of debris in the inter-retinal space indicated that the phagocytotic

function of the RPE was compromised suggesting loss of normal

RPE function. In some areas, the presence of macrophage-like

pigmented cells on the apical surface of the RPE suggested the

disruption of the posterior BRB and possible leukocyte infiltration

(Fig. 5F). Thus, downregulation of ZO-1 or increase of ZONAB

expression cause RPE dedifferentiation that leads to widespread

degeneration of the retina after 10 days of subretinal injections of

the respective vectors, suggesting a severe loss of RPE function.

RPE morphological changes were observed after delivery of

either vector titre. However, following injection of vector at the

higher titre of 108 T.U./ml, retinal foldings and rosette formations

Figure 2. Lentivirally-mediated modulation of ZO-1 and ZONAB expression. Retinal cryosections were obtained from eyes 5 days after the
subretinal injections of LNT.shGFP (A,B), LNT.ZONAB (C,D) or LNT.shZO-1 (E,F) at 107 T.U./ml. Immunostaining was performed using antibodies
against ZONAB (left panel) and ZO-1 (right panel). Following injection of LNT.shGFP, ZONAB can only be detected at low levels in the RPE (A) and ZO-
1 was observed in the RPE as apical dots depending on the section (B). Subretinal injection of LNT.ZONAB resulted in an elevation of ZONAB levels in
RPE cells (C) and did not affect ZO-1 levels (D). Depletion of ZO-1 expression resulted in a slight increase in ZONAB expression (E) and decreased of
ZO-1 expression (F) compared with control eyes (B). Nuclei were counterstained with DAPI. White arrows, RPE monolayer. Size bar, 20 mm. n = 4 per
treatment group.
doi:10.1371/journal.pone.0015730.g002

Figure 3. Manipulation of ZO-1 and ZONAB expression increases RPE cell proliferation. Retinal cryosections were obtained from eyes 5
days after the subretinal injections of LNT.shGFP (A,B), LNT.ZONAB (C,D) or LNT.shZO-1 (E,F) at 107 T.U./ml. BrdU was injected intraperitoneally
following the subretinal vector administration. Immunostaining was performed using antibodies against RPE65 (left panel) and BrdU (right panel). In
eyes injected with LNT.shGFP, high levels of RPE65 were evident in RPE cells (A) and there was no evidence of proliferation judged by the absence of
BrdU staining (B). Overexpression of ZONAB did not change RPE65 levels (C) but increased the number of BrdU positive cells, indicative of
proliferation (D, white arrowhead). Delivery of LNT.shZO-1 did not affect RPE65 expression (E) but increased BrdU positive cells suggesting RPE
proliferation (F, white arrowhead). Nuclei were counterstained with DAPI. Size bar, 20 mm. n = 4 per treatment group.
doi:10.1371/journal.pone.0015730.g003
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were evident indicating an impact on the integrity of the

neuroretina. These alterations were particularly evident in the

outer nuclear layer (ONL), which consists of photoreceptor nuclei.

Downregulation of ZO-1 or overexpression of ZONAB induced

predominantly pyknotic cells that appeared to have lost polarity

and formed cell aggregates compromising monolayer integrity. In

some areas these cells invaded the inner photoreceptor matrix

(IPM) (Fig. 5F). These pyknotic cells RPE breaks occurred in both

treatment groups mostly adjacent to pyknotic RPE areas. Thus,

the levels of ZO-1 and ZONAB expression are important

determinants of RPE cell morphology and differentiation in vivo,

indicating that ZO-1 and ZONAB are critical for RPE cells to

maintain their differentiated phenotype and to fulfil their support

function for the neural retina.

To evaluate the morphological changes observed in semithin

sections in more detail, we used transmission electron microscopy

(TEM) to assess the ultrastructural changes of the RPE. Normal

RPE consists of a monolayer of tightly packed cells that exhibit a

Figure 4. Quantification of BrdU positive RPE cells. BrdU positive RPE cells and total RPE cell numbers were counted in the middle of the
treated area of retinal cryosections obtained from subretinally injected mice 5 days after vector administration at a titre of 107 T.U./ml. Following
injection of LNT.shZO-1 or LNT.ZONAB BrdU positive cells increased to 2.4% and 2.0% of total RPE cell number, respectively, whereas very few BrdU
positive cells were identified in LNT.shGFP (0.05%) treated eyes. (*P,0.001 compared with LNT.shGFP control. Student’s t-test. n = 4
[20 measurements from 4 eyes per treatment group]).
doi:10.1371/journal.pone.0015730.g004

Figure 5. Downregulation of ZO-1 or overexpression of ZONAB affects retinal morphology. Retinal semithin sections were obtained
after 10 days of subretinal injection of LNT.shGFP (A,D), LNT.ZONAB (B,E) or LNT.shZO-1 (C,F) at 107 T.U./ml (left panel, 640 magnification) and
108 T.U./ml (right panel, 620 magnification). Areas in red rectangles are shown in higher magnification. The LNT.shGFP treated eyes (A,D) exhibit
normal retinal architecture showing that there are no adverse effects induced either by the lentiviral vector itself or by the expression of shRNA.
Following injection of either LNT.ZONAB (B,E) or LNT.shZO-1 (C,F) signs of RPE puknosis and multilayerisation (black arrows) as well as retinal folding
and rosette formation in areas corresponding to those with severe RPE abnormalities (white arrows) were observed. GCL, ganglion cell layer. IPL,
inner plexiform layer. INL, inner nuclear layer. OPL, outer plexiform layer. ONL, outer nuclear layer. IS, inner segments. OS, outer segments. RPE, retinal
pigment epithelium. CH, choroid. Size bar, 20 mm. n = 4 per treatment group.
doi:10.1371/journal.pone.0015730.g005
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highly polarised epithelial phenotype. They are separated from the

choroid by Bruch’s membrane (BM) (Fig. 7A). Adjacent RPE cells

are interconnected via a network of cell-cell intercellular junctions

with tight junctions located towards the apical surface of the lateral

membrane (Fig. 7A,B). The apical membranes of RPE cells are

covered with finger-like microvilli that surround the photoreceptor

outer segments. RPE cells with reduced expression of ZO-1 or

increased expression of ZONAB were flatter and more elongated

in comparison with the cuboidal architecture of normal RPE cells

suggesting that they had lost polarisation (Fig. 7C, D). Basal

infoldings were absent or highly disorganised and many cells did

not adhere closely to the BM. Apical microvilli were also absent,

disrupted cell-cell junctions and some multilayerisation were

observed. The cells were often surrounded by cell debris or

extracellular matrix components (Fig. 7C). At areas near a

monolayer break point, the RPE was thinner and although the

cells retained some of their normal morphological characteristics,

the microvilli on the apical membrane and the basal infoldings

appeared disorganised. Whereas only mature melanin vesicles can

be observed in a healthy postnatal RPE, different stages of melanin

vesicle maturation were observed in the cells near monolayer

breaks (Fig. 7E, asterisks). Melanin vesicle maturation occurs

prenatally and although some controversy remains over whether

melanin synthesis occurs in the adult RPE, presence of immature

melanin vesicles might be a sign of diseased or stressed RPE [20].

Thus, downregulation of ZO-1 or overexpression of ZONAB in

RPE cells in vivo increase cell proliferation and trigger morpho-

logical changes.

When epithelial cells undergo mesenchymal transition, they lose

their epithelial character and acquire a fibroblastic phenotype and

migratory properties [21,22,23,24,25,26,27,28,29]. This process,

known as EMT, has been described during the progression of

different disease conditions such as cancer metastasis and fibrotic

scarring in proliferative vitroretinopathy [21,23]. During EMT,

epithelial cells gradually lose their epithelial morphology and

acquire mesenchymal gene expression profiles. Some of the EMT

markers upregulated in transformed cells are glial fibrillary acidic

protein (GFAP), vimentin, cyclin D1 (cD1), alpha smooth muscle

actin (a-SMA), Snail1, C-terminal binding protein 1 (CtBP1) and

N-Cadherin (with corresponding loss of E-cad) [22,24,26,27,

28,29]. To test whether the RPE cell morphological changes

induced by downregulation of ZO-1 or overexpression of ZONAB

was due to RPE cells undergoing EMT, we tested for the

expression of EMT markers in RNA isolated by laser capture

microdissection (LCM) from frozen tissues. Cryosections from eyes

subretinally injected with either LNT.ZONAB or LNT.shZO-1

were obtained after 10 days of vector administration and

approximately 100 RPE cells were collected from within the

treated areas by LCM. RT-PCR was performed on mRNA

extracts using different primers for EMT marker amplification.

Figure 8 shows that GFAP, vimentin, N-cadherin, cD1 and Snail1

were increased by overexpression of ZONAB or downregulation

of ZO-1. We did not observe overexpression of a-SMA or CtBP1

indicating that either these markers are not involved in early

EMT, or a-SMA is not involved in ZONAB-mediated RPE

transformation. We also used this approach to confirm the data

obtained by inmunofluorescence and assess the levels of down-

regulation of ZO-1 or overexpression of ZONAB (Fig. 2 and 3).

Thus, these results demonstrate that manipulating the expression

of ZO-1 or ZONAB increases cell proliferation, alters epithelial

phenotype and induces expression of five markers of EMT.

RPE morphological disruption induced by manipulation
of ZO-1 or ZONAB expression causes features of RPE
dysfunction in fluorescein angiography

To evaluate the functional consequences of manipulation of

ZO-1 or ZONAB expression in RPE cells, we next assessed

whether the changes in the RPE morphology lead to functional

alterations by fluorescein angiography. This technique demon-

strates the integrity of the RPE tissue because a confluent RPE

monolayer normally masks choroidal hyperfluorescence whereas

loss of RPE function exposes it. Fluorescein angiography is used

clinically to assess widespread loss of RPE cells in atrophic age-

related macular degeneration, for example, where geographic

RPE atrophy results in unmasking of the underlying choroidal

hyperfluorescence. Figure 9 shows the results of fluorescein

angiography at different time points (10, 20 and 30 days) following

subretinal injections of LNT.ZONAB or LNT.shZO-1 at a titre of

108 T.U./ml. In each case there was a progressive increase in

fluorescence in the areas of the retina exposed to the vector. The

speckled conformation of hyperfluorescence indicated discontinu-

ities in the RPE with, at a latest time point (60 days p.i.), evidence

of extensive RPE cell loss and retinal degeneration (data not

Figure 6. Downregulation of ZO-1 or overexpresion of ZONAB induces RPE pyknosis and breaks. Two features were assessed: RPE
pyknosis and RPE breaks 10 days after subretinal injection of vectors at 108 T.U./ml. Pyknotic RPE cells were defined as hyperpigmented cells that
were not within a continuous monolayer. Percentage of retinal sections in which RPE pyknosis and breaks were observed is plotted. LNT.shZO-1 and
LNT.ZONAB treated eyes contained many pyknotic RPE cells. RPE breaks or cell loss occurred adjacent to pyknotic RPE areas in LNT.shZO-1 or
LNT.ZONAB treated eyes, respectively. (n = 4, 20 measurements from 4 eyes per treatment group).
doi:10.1371/journal.pone.0015730.g006
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shown). No fluorescein leakage was observed between early and

late phase angiographs indicating that the integrity of the

choroidal and retinal vasculature was not affected by subretinal

delivery of the lentiviral vectors. Thus, manipulation of ZO-1 or

ZONAB expression in vivo not only affects RPE morphology but

also leads to a loss of at least some RPE functions.

Discussion

Cell-cell adhesion is essential for the morphological integrity as

well as the control of proliferation and differentiation of epithelial

cells. Here, we demonstrate that alteration of the levels of the TJ

components ZO-1 and ZONAB leads to changes in RPE cell

proliferation, differentiation and function. Downregulation of

ZO-1 or the overexpression of ZONAB led to the induction of

cell proliferation and altered morphology correlating with

expression of five EMT markers: GFAP, vimentin, N-cad, Snail1

and cD1. This study not only describes a novel approach to assess

the role of TJ proteins in RPE function in vivo but also

demonstrates that the two TJ-associated signalling proteins ZO-1

and ZONAB play a critical role in RPE homeostasis in vivo.

ZO-1 was the first TJ component to be identified [30]. ZO-1

deficiency in mice causes an embryonic lethal phenotype

associated with defected yolk sac angiogenesis and apoptosis of

embryonic cells [31]. In cells in two dimensional cultures,

downregulation of ZO-1 has a mild effect on cell-cell junction

assembly and a regulatory role in epithelial cell proliferation and

gene expression [6]. However, in cells in three dimensional

Figure 7. Ultrastructure of the RPE after 10 days following subretinal injection of vectors at 108 T.U./ml. In LNT.shGFP treated eyes (A),
the RPE monolayer lies on Bruch’s membrane, has apical microvilli towards the photoreceptor outer segments the cells are interconnected by tight
junctions (A, black arrow. B, white arrows). In eyes either with depleted levels of ZO-1 (C) or overexpressing ZONAB (D), the RPE monolayer was
highly disorganised with a marked loss of the epithelial monolayer characteristics, areas of RPE cells located on top of each other (see Figure 6: RPE
pyknosis) and accumulation of extracellular debris was also seen (C, asterisk). RPE cells appeared flattened and elongated with absent microvilli (black
arrows indicate the flat apical side of the cell), reduced basal infoldings, and mesenchymal-like morphology. In addition, numerous vacuoles were
present within the cells (D, asterisk). In areas adjacent to RPE breaks (E), the RPE retained some of its epithelial characteristics, such as, microvilli
present on the apical membrane and intracellular basal infoldings. However, melanin vesicle maturation was defective (asterisks). R, RPE cell nuclei.
OS, photoreceptor outer segments. Mv, microvilli. BM, Bruch’s membrane. BI, basal infoldings. Ph, phagosome. Size bar, 1 mm (except in B, 200 nm).
n = 4 per treatment group.
doi:10.1371/journal.pone.0015730.g007
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cultures, downregulation of ZO-1 affects epithelial morphogenesis

[10]. ZO-1 has multiple protein-protein interaction domains [32].

The SH3 domain is necessary and sufficient to regulate cell

proliferation and interacts with the Y-box transcription factor

ZONAB [9]. The cytoplasmic sequestration of ZONAB by ZO-1

regulates its nuclear localisation and, hence, its effect on gene

expression. The ZO-1/ZONAB pathway regulates cell cycle

progression and epithelial morphogenesis in cells in culture [9,10].

In this study we have demonstrated that downregulation of ZO-1

induced RPE proliferation and de-differentiation that eventually

resulted in cell loss and retinal degeneration. Overexpression of

ZONAB resulted in a very similar phenotype, suggesting that

ZONAB activation is the main reason for the observed effects in

response to depletion of ZO-1 expression in RPE cells. Down-

regulation of ZO-1 by LNT.shZO-1 has previously been shown to

stimulate the transcriptional activity of ZONAB in epithelial cells

in culture as ZO-1 functions as an inhibitor of ZONAB [9,10]. In

this study, reduced ZO-1 expression in RPE cells using the same

vector also resulted in an increase in ZONAB staining. A possible

explanation for this might be that depletion of ZO-1 led to

activation of ZONAB, which might in turn have caused a positive

feedback loop on its expression as ZONAB is known to be

upregulated during proliferation [9,11]. The similarities of the

phenotypes observed following manipulation of ZO-1 or ZONAB

levels together with their known biochemical and functional

interactions, such as increase of cell proliferation and cyclin D1

expression, suggest that ZO-1 and ZONAB exert their effects on

the RPE by, at least in part, a common molecular pathway. This

pathway is likely to involve transcriptional activation of ZONAB.

However, it might involve alternative mechanisms. For example,

ZONAB is a Y-box factor which are also known to participate in

cytoplasmic processes such as mRNA translation [33]. Such a

possibility is further supported by the strong cytoplasmic staining

of ZONAB in RPE cells.

Increase in ZONAB activity and ZO-1 downregulation resulted

in an EMT-like phenotype. The fact that RPE cells have

expression of RPE65 at similar time point that they start to

upregulated EMT markers (Figure 8) suggest that 10 days is an

earlier stage of the EMT-like phenotype. Nevertheless, de-

differentiation seemed to occur more slowly than induction of

proliferation, suggesting that cell cycle entry is a primary effect,

whereas de-differentiation might be a consequence of such early

changes. As the fraction of proliferative cells was relatively small, it

could be that de-differentiation is triggered by these few cells via

altered expression of adhesion proteins and/or secreted factors

and that non-proliferative cells de-differentiate due to a bystander

effect. However, it is also possible that morphological changes take

longer to develop, but that yet to be identified early ZONAB

targets do drive de-differentiation. It will thus be important to

identify ZONAB target genes in RPE cells on a genome wide scale

and design approaches to stimulate in vivo RPE proliferation

independent of ZONAB to test whether induction of proliferation

in even only a fraction of the cells is incompatible with the

differentiated RPE phenotype.

RPE cells not only started to express mesenchymal markers,

their cuboidal morphology changed to a flattened structure lacking

the clear morphological hallmarks of RPE cells such as clear cell

junctions, apical microvilli and basal infoldings. Together with the

induction of cell proliferation, loss of epithelial morphology and

EMT marker expression, these are all features of proliferative

vitreoretinopathy (PVR) [21,19,34], a condition of exaggerated

peri-retinal gliois induced by retinal detachment that is believed to

be caused by proliferation and transdifferentiation of RPE cells.

Figure 8. Downregulation of ZO-1 or overexpresion of ZONAB
induces expression of EMT markers. RT-PCR amplification of
mesenchymal markers (A) on RNA isolated from laser captured RPE cells
(B) from eyes collected 10 days after subretinal injection with either
LNT.shGFP, LNT.ZONAB or LNT.shZO-1. Specific primers for GFAP,
vimentin, N-cadherin, cyclin D1, Snail1, CtBP1 and a-SMA were used as
described in Materials and Methods. EMT markers associated with cell
cycle progression such as Snail1 and cyclin D1 were found to be
upregulated in either LNT.ZONAB or LNT.shZO-1 treated eyes. EMT
morphological markers such as GFAP, vimentin and N-cadherin were
also found to be upregulated in eyes showing overexpression of
ZONAB or downregulation of ZO-1. (B) Indicative image of selected RPE
cells before (upper image) and after (lower image) laser capture
microdissection. Approximately 100 cells (three times the area
indicated) were collected per eye per treatment group. Size bar,
20 mm. n = 4 per treatment group.
doi:10.1371/journal.pone.0015730.g008

Figure 9. Downregulation of ZO-1 or overexpresion of ZONAB
induce changes in fluorescein angiograms. Late-phase fluorescein
angiograms of RNAi-treated eyes were obtained at 10, 20 and 30 days
after subretinal injection of vectors (108 T.U./ml). No abnormal changes
in fluorescence were observed in LNT.shGFP injected eyes. Marked
hyperfluorescence, indicating RPE cell loss, was seen in either LNT.
shZO-1 or LNT.ZONAB treated eyes. Increasing intensity of the
hyperfluorescence between timepoints suggests that RPE cell loss
progressed over time. n = 4 per treatment group.
doi:10.1371/journal.pone.0015730.g009
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RPE de-differentiation has been shown to occur both in vitro [28]

and in vivo [21] upon EMT marker overexpression and loss of TJ

signalling components in PVR [35,36] whereas EMT marker

expression has also been linked with AMD [37]. Furthermore,

aberrant or reduced retinal ZO-1 expression has been associated

with blood-retinal barrier breakdown in diabetic retinopathy

[38,39]. Thus, certain features of the induced phenotype are

common to disorders of the human RPE.

In this study we have observed that an increase in ZONAB

activity results in increased RPE cell proliferation and altered RPE

morphology, suggesting RPE dysfunction. As the postnatal RPE is

no longer proliferative [19], the observed phenotype suggests that

postnatally increased RPE proliferation could lead to RPE

dysfunction and EMT. Furthermore, RPE dysfunction can lead

to retinal degeneration in different animal models [16]. Alterna-

tively, epithelial transformation could be one possible reaction of

RPE cells in response to induced cellular stress caused by loss of

contact inhibition due to retinal detachment or injury. ZONAB

activation has also previously been linked to the cellular stress

response [40]. It is therefore possible that the phenotype we

observed might also result from a cellular stress response in the

RPE. It will thus be interesting to test if Apg-2, which is

responsible for ZONAB activation in response to heat shock, is

also important for RPE homeostasis and, if so, what types of

retinal stress conditions stimulate Apg-2 to activate ZONAB in the

RPE. Nevertheless, the molecular function of ZONAB in healthy

RPE is currently not known.

In this study, we demonstrated efficient lentivirally-mediated

RNA interference and expression of junctional proteins in RPE

cells in vivo that can be used to study the role of cell-cell adhesion-

associated signalling mechanisms in a mature epithelial tissue. The

induced phenotypes highlight the importance of ZONAB and

ZO-1 in RPE homeostasis in vivo. However, additional character-

isation of ZONAB involvement in EMT and cellular stress

responses are required to define the underlying molecular

mechanism. Furthermore, analysis of ZO-1 and ZONAB in

human tissues derived from patients with different retinopathies

will help to elucidate the functional contributions of this TJ-

associated signalling pathway in retinal physiology and pathology.
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