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Electronic structure and luminescence of CsI : Na 
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Abstract. Calculations are performed on several aspects of the luminescence of pure CsI and 
CsI: Na. These include electronic-structure calculations by both pseudopotential and semi- 
empirical molecular-orbital methods, as well as lattice-configuration studies. The results 
suggest that the main observed emission in CsI: Na at 2.95 eV involves the recombination of a 
self-trapped exciton immediately adjacent to the substitutional Na  impurity. 

1. Introduction 

Sodium-doped CsI is a remarkably effective x-ray phosphor. The high atomic numbers of 
Cs and I give strong x-ray absorption, and there is an efficient blue luminescence asso- 
ciated with the sodium ions. The CsI: Na system is also an example of ionic systems which 
are discussed intermittently in the literature and which parallel the isoelectronic (or 
isovalent) systems much studied in semiconductors. 

Even though CsI: Na has been developed to the point of practical application (Stevels 
1975, Stevels and Pingault 1975), there is much uncertainty about the precise mechanisms 
which lead to the blue luminescence. One complication has been doubt about which of 
the observed luminescence bands are intrinsic and which are sodium-associated. Another 
uncertainty concerns the electronic and ionic states involved; this has been the subject of 
both vague and unlikely suggestions. In this note we shall bring together a number of 
separate calculations which relate to CsI: Na and which, collectively, limit the number of 
possible interpretations. Various authors have suggested that iodine vacancies (Stevels 
1976), F-centres (Salau 1978) or sodium interstitial atoms (Basil'chuk et al 1977) are 
involved with the sodium. We shall not discuss these possibilities here, except to  note that 
substitutional sodium is probably the dominant imperfection. 

2. Charge states of Na in CsI 

Substitutional Na in CsI can exist in at least three charge states. The simplest is just Na' 
replacing Cs' . This small substitutional ion will obviously distort the surrounding 
lattice. It is likely but not certain that the displacement field is principally an inward 
radial distortion of the neighbours, rather than the off-centre behaviour of the kind 
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seen in KC1: Li. The second charge state involves the capture of an electron by the sodium 
ion to give [Na'e]. The binding results from the greater electron affinity of Na', 
modified by the altered lattice distortion. Analogous charge states have been noted by 
Park and Faust (1966) for K1:Na and by Schneider (1978) for KC1:Na; the KC1:Br 
system (Hinks and Susman 1977) may also be analogous. The third charge state involves 
the capture of a hole. In alkali halides, the hole is self-trapped (the V, centre). The binding 
of sodium and hole is principally elastic, and the system is best described as [Na'V,]. 
We shall now describe some calculations on [Na'e] and [Na'V,]. 

2.1. The [ N u  'e] system 

Calculations of the substitutional sodium ion as an electron trap have already been 
reported by Monnier (1976). He concluded that the electron was bound by 0.45 eV, and 
that photoionisation ([Na'e] -+ [Na'] + e) was the origin of the observed peak at 
1.72 eV. The final state is a p-like resonance in the continuum of the conduction band 
states, into which it can decay rapidly. The transition thus parallels that giving the D 
line in the free atom. The peak lies higher than the photoionisation threshold because 
of the form of the density of states of the conduction band. Monnier also proposed that 
it is a relaxed excited state of [Na'e] which has binding corresponding to the observed 
1.6 meV thermal ionisation energy. This weak binding is caused primarily by the 
distortion field. 

We have made additional calculations which parallel Monnier's and which support 
his conclusions about the ground state. The present calculations have used the point-ion 
model with ion-size corrections (Bartram et ul 1968). The most important conclusions 
are that the general magnitude of the binding is rather less than 1 eV, in broad agreement 
with Monnier, and that the wavefunctions contain a very extended component, with 
effective radii of 4-6 A. The method used is not especially accurate for such extended 
states, principally because of limitations involved in handling the distortion field. The 
calculations suggest that a p-like bound state lies very close to the ls-like ground state. 
There is no significant change in the binding if the impurity is moved a small distance 
from the precise substitutional site. 

2.2. The [Nu' VJ system 

The self-trapped holes in the caesium halides have been discussed by Monnier et ul 
(1977). The present work extends their treatment to cover two configurations of V, 
centres near Na' substitutional ions. Like the earlier work, the calculations use the 
HADES program (Lidiard and Norgett 1972), and we have adopted the same inter- 
atomic potentials. 

The V, centre in CsI can be regarded as an I; molecular ion replacing two adjacent 
I -  ions. The two configurations we have considered are (i) configuration A, in which 
the two I -  ions replaced by I; are both nearest neighbours to the Na', and (ii) configura- 
tion B, in which only one of these I-  is a nearest neighbour. The most important result 
is that the closer arrangement A is lower in energy by about 0.3 eV. The precise figure 
depends on the assumed weak Cs-Na attractive interaction. If it is taken to be the same 
as the Cs-Cs interaction, E ,  is lower than E,  by 0.33 eV: if the Cs-Na interaction is 
reduced by a factor of ten, the difference is 0.35 eV. Both these figures suggest an inter- 
action which is primarily elastic, anda thermal binding energy ([Na'V,] -+ [Na'] + V,) 
of around 0.4 eV. 
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3. Luminescence and the exciton 

Recombination luminescence has been observed by both optical and x-ray excitation of 
Cs1:Na. In optical absorption, where the band gap is 6.3 eV, the intrinsic exciton is at 
5.81 eV, and Na-associated bands appear at 5.44 and 5.69 eV. When there is very little 
Na present, a self-trapped exciton might be expected to form (in essence [V,e]), showing 
the characteristic radiative and non-radiative recombination. When x-ray excitation 
occurs, we presume that a core hole is formed which later changes into a self-trapped 
hole and expect more V, centres separated from their electrons than when optical excita- 
tion is used. 

The blue luminescence of CsI:Na comes primarily from a 2.95 eV band. Several 
different recombination mechanisms are possible, including these associated with Na' : 

(i) long-distance tunnelling recombination, as for donor-acceptor pairs in semi- 
conductors, 

[Na'e] + V, + [Na'] + hv; 

(ii) long-distance electron transfer to form a self-trapped exciton intermediate, 

[Na'e] + V, + [Na'] + [V,e] -, [Na'] + hv; 

(iii) capture to form a sodium-localised, self-trapped exciton, 

[Na'V,] + e -+ [Na'V,e] --+ [Na'] + hv; 

(iv) recombinative capture of a free electron 

[Na'V,] + e -, [Na'] + hv. 

There are many other possibilities with different degrees of complexity, but these four 
contain most of the important elements. One important distinction among these 
options is whether recombination is direct although modified by the Na' (mechanisms 
i and iv) or whether an intermediate species is formed, like the self-trapped exciton 
[V,e] in (ii) or its trapped analogue in (iii). There is strong experimental evidence for 
mechanisms like (ii) or (iii). Pellaux et a1 (1978) have shown that, if aligned V, centres 
are used, luminescence is polarised with respect to the V, centre axis, rather than 
related to the random directions of nearby Na' ions. Bates et a1 (1977) found no polarised 
luminescence after excitation by polarised band-gap light. This does not rule out the 
self-trapped species, as they suggest. Probably their null result comes simply from the self- 
trapped excitons produced by the exciting light and from the reorientation which can 
occur in the excited states of self-trapped excitons. The doubts in the experimental 
literature about whether certain bands are intrinsic or Na-induced also support models 
like (ii) and (iii), since the differences seen would be kinetic (i.e. in the route to the lumines- 
cent state) rather than distinct final transitions. Our later results support model (iii). 

3.1. Electronic structure of the selftrapped exciton in Csl 

This system parallels the self-trapped excitons in the NaC1-structure alkali halides in 
many respects. It can be considered as an electron trapped by a self-trapped hole, [V,e]. 
The main features of the lowest state, both in electronic structure (Fowler et a1 1973) 
and in the kinetics of transitions amongst the low-lying states, closely resemble other 
self-trapped excitons. The main differences stem from the different geometry of the host 
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Table 1. Comparison of the recombination and electron-excited energies (in eV) of the self- 
trapped exciton in CsI. The 0.60 eV experimental value is the difference between the 4.27 and 
3.67 eV bands and is queried because the precise states are in doubt. 

Pseudopotential C ~ D O  experimental 

Recombination energy 
from lowest state (AIJ  
A,g-Bu separation 0.66 
A,8-Eu separation 0.34 
AI8-A separation 1.11 

l! Ionisation energy 

3.11 3.67 
0.97 
1.30 0.60? 
1.38 

(4.02) 

lattice and from the large spin-orbit coupling. In CsI, whilst selection rules obviously 
do exist (T Iida, private communication 1978), the distinction between spin-allowed and 
spin-forbidden optical transitions is inappropriate. 

Pellaux et  al (1978) discuss two principal emissions from self-trapped exciton re- 
combination: one at 4.27eV, with both R and (T polarised components, and one at 
3.67 eV, which is purely n polarised. Other workers note ‘intrinsic’ bands at 4.0 and 
2.95 eV. We have made two sets of calculations which are related to  these results. In the 
first, the point-ion model with ion-size corrections was used to deduce the energy levels 
of the electron in the potential of the V, centre. This method is like that used by Song 
et al (1975) and uses the PRISM code. The levels are listed under ‘Pseudopotential’ in 

Table 2. CNDO parameters 

Orbital experiments (au) Ionisation energies (eV) Bonding parameters (eV) 
I on ‘SP ‘d Is IP I d  ps, p d  

c s  + 1.35 5.71 0.72 0.45 0.1 -4.70 -4.6 
I -  2.15 5.23 18.0 5.06 0.2 - 6.65 - 3.0 

table 1. In  the second approach, semiempirical molecular-orbital calculations were 
performed using the CNDO method embodied in the Harwell MOSES code. The method 
is like that used by Itoh et a1 (19751, and uses C ~ D O  parameters derived by Ong (1977). 
The parameters are listed in table 2. In  table 3 the various properties of CsI molecules 
and perfect crystals are predicted using the same parameters, and confirm agreement with 
experiment. I t  should be stressed, however, that these parameters d o  not represent the 
best that might be achieved ultimately, though they should be a satisfactory working 

Table 3 CVDO Predictions for the CsI molecule and perfect solid 
~ ~~~~~ ~~ ~ 

CsI molecule Bond length (A) Dissociation energy (eV) Dipole moment (Debye) 
~~~ 

Theory 3.32 3.57 11 18 
Experiment 3 32 3.57 12 1 

Crystal Valence band width (eV) Band gap (eV) Comment 

Theory 3.29 

Experiment 3.2 

5.50 

6.2 

40 atom cluster plus 
surrounding point ions 
Poole et al (1975a, b) 
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set. The discrepancies between the methods may result partly from the limitations of the 
parameters. There will also be a contribution from the difference in the precise lattice 
geometries used. Nevertheless, there is an encouraging degree of consistency, and broad 
agreement with available data. 

3.2. Effects of Nu on the self-trapped exciton in Csl 

The Na impurity has several possible effects on the self-trapped exciton, caused by both 
its higher electronegativity and its distortion of the lattice. In this section we discuss 
these effects in relation to the strong emissions seen at 3.67 eV in pure CsI and at 2.95 eV 
in Na-doped CsI. In particular, we verify that model (iii) of 4 3.1 fits the observed spectra. 

The easiest way to relate the recombination energy for the process involving the 
defect-localised, self-trapped exciton [Na'V,e] -+ [Na'] + hwNa to  the intrinsic 
process [V,e] + hw, is to consider an (imaginary) energy cycle in which first the electron 
and then the V, centre are removed from the Na+ ion. This shows that we can write 
hwNa = hw, - EY - (El  - E,) where EY is the binding of the V, centre to the [Na'], 
and where E, and E ,  are the energies needed to remove the electron from [Na+V,e] 
and [V,e] respectively. 

The energy EV was estimated as 0.4 eV in 4 2.2. The difference (E ,  - E,) is also small, 
and it cannot be estimated very accurately by the full variational pseudopotential method. 
However, we can use the pseudopotential wavefunctions and Hamiltonian to obtain a 
prediction from first-order perturbation theory. Thus the expectation value of the 
difference in the Cs' and Na' ion-size corrections can be calculated using the un- 
perturbed wavefunction. We have therefore included only the effect of the altered 
electronegativity of the Na' relative to Cs'. There is an implicit assumption (consistent 
with almost all earlier work on the self-trapped exciton) that the trapped electron is 
sufficiently diffuse to not alter the local geometry significantly. The estimate gives 
E, - E ,  2i 0.3 eV. Thus we predict that recombination of a self-trapped exciton adjacent 
to  [Na'] will occur at EY + (EI  - E,) N 0.7 eV lower energy than the recombination 
of an isolated self-trapped exciton. Since the observed difference between the strong 
extrinsic and intrinsic bands is 3.67 - 2.95 N 0.72 eV and in the right direction, we make 
these tentative assignments : (i) 3.67 eV band-intrinsic self-trapped exciton recombina- 
tion; (ii) 2.95 eV band-recombination of self-trapped exciton adjacent to Na' impurity. 
We note that the [Na'V,e] system can be aligned in the same way as [V,e] and that it 
should show similar dichroism. 

A problem emerges when these results are compared with those for KC1: Na (Hirano 
and Itoh 1977) and KBr:Na (Toyoda et al 1976) where a blue shift is observed, rather 
than the red shift expected from arguments like those already presented. Clearly the 
different crystal structures may have some effect. It seems more likely, however, that the 
intrinsic and extrinsic transitions seen in KC1: Na and KBr : Na do not correspond pre- 
cisely. Whereas the observed transition is merely shifted by Na in CsI, quite different 
electronic states appear to be involved in KBr and KCl, depending on whether Na is 
present or not. 
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