
Experience with Lightweight
Distributed Component Technologies in

Business Intelligence Systems?

Leticia Duboc1, Tony Wicks1, and Wolfgang Emmerich2

1 Searchspace Ltd.
80-110 New Oxford Street,
London, WC1A 1HB, U.K.

{l.duboc|t.wicks}@searchspace.com
2 Dept. of Computer Science
University College London,

WC1E 6BT, U.K.
w.emmerich@cs.ucl.ac.uk

Abstract. Business Intelligence (BI) systems address the demands of
large scale enterprises for operational analytics, management information
and decision support tasks. Building such applications presents many
challenges. They must support complex and changing data models, have
fast turnarounds, present an up-to-date and accurate view of information
and provide extensibility mechanisms for new analyses.
Widely adopted distributed object systems, such as J2EE can be heavy-
weight and inflexible when applied to the described scenario. This paper
presents our experience when developing a data analysis system that
applies a combination of lightweight distributed component technologies
available for Java.
These technologies are combined in an event-based architecture that an-
ticipates constant changes to analysis algorithms in short time frames
and provides the ability to maintain correlated analyses in a consistent
state. The resulting architecture is extensible, easy to deploy, highly con-
figurable and has a very flexible data model. We compare this approach
with existing distributed object systems and evaluate its suitability to
provide business intelligence.

1 Introduction

BI encompasses a wide variety of tools and applications that can extract bet-
ter business understanding from raw, typically transactional, data. This variety
incorporates query and reporting tools, OLAP servers, data mining and data
integration tools [3]. While traditional BI solutions are appropriate for many
tasks, they are best aimed at the dimensions of a problem that remain relatively
static. Operational analytics tools, instead, seek to better extract meaningful

? This work is partially supported by tti Ltd. through KTP 3528.

2 Leticia Duboc, Tony Wicks, and Wolfgang Emmerich

information based on self-tuning and learning, resource conservation and dy-
namic expansion to the true dimensionality of the problem [2]. They should
support complex data models, be extensible accumulate new analysis and allow
for scalability.

We are interested in systems that will be capable of handling volumes in
excess of 100 million transactions per day, accumulated over months or years.
Scalability is often achieved by distributing computational tasks across a number
of processors executing in parallel. This number can be increased to accommo-
date growing volumes, if the distributed software architecture has been cho-
sen carefully. In enterprise settings, such software architectures are often imple-
mented using distributed component technologies. Nevertheless, widely adopted
distributed object systems, such as architectures based on the Java 2 Enterprise
Edition (J2EE), can be inappropriate when applied to data intensive analysis
scenarios [17].

The main contribution of this paper is an account of our experience when
architecting PLUS, which is such an experimental environment to devise algo-
rithms to be deployed in Searchspace’s operational analytics solution. We ini-
tially investigated J2EE technologies, most notably the Enterprise Java Bean
component model (EJB) [17] and the Java Messaging Service (JMS) [18]. We
present reasons why these technologies do not do justice to the data-intensive
problem domain and instead present a solution that uses more lightweight tech-
nologies. The main technologies used in this work were:

– Hibernate, an open source object/relational mapping toolkit for storing plain
old Java objects (POJOs) to a database [20].

– Java Management Extensions (JMX), which provides management capabil-
ities for a service-driven network [12].

– XDoclet, a meta-data template engine that parses the source code and gen-
erate artifacts such as configuration files and support code [21].

This paper is organized as following: Section 2 discuss some of the common
used tools and techniques for data analysis. Section 3 presents PLUS, the real
world system described in this paper, and its requirements. The following section
discusses the inadequacy of J2EE for the problem described. Section 5 briefly
introduces the software architecture that we have built using lightweight dis-
tributed component technologies. General observations and lessons learned are
drawn in section 6. We then conclude the paper in Section 7.

2 Background

Extracting meaningful information from large data sets is challenging. Selection
of suitable analysis approaches is non-trivial and comprises iterative processes of
experimentation and testing. For numerous reasons, a single analysis algorithm
will usually be split into a sequence of dependent steps. These steps reduce algo-
rithmic complexity, allow intermediate results to be available for other purposes,
such as user interrogation, and enable new analysis streams to use derived data

Experience with Lightweight Distributed Component Technologies 3

that may already be available in the system. Additionally, division of algorithms
has benefits in terms of system scalability and performance.

Layering analytics in this way introduces dependencies between algorithms
and additional complexity in terms of managing dependencies associated with
the data being processed. The challenge is therefore to create mechanisms that
can manage these dependencies such that a system provides guaranteed, con-
sistent results arising from changes to transactional, reference or other system
data feeds. These features are necessary to force results to be re-calculated when-
ever analytics are changed and, more importantly, must be correctly managed
to allow deployment into operational data changing environments.

A common approach is to use purpose built analytic tools, such as IDL [16]
and MATLAB [22], which enable users to perform ad-hoc analysis. These tools,
however, do not provide means to deploy created analysis in an operational
environment. To reproduce a result with such tools, the analyst is forced to
repeat the whole process. Further they are not designed to scale to the type of
environment we are interested in.

An alternative approach is to create analyses that can be deployed opera-
tionally. Commonly, this would include database stored procedures and OLAP
[23] tools, which are efficient and powerful query mechanisms. Nevertheless, those
solutions, by themselves, do not provide means for distribution, sampling and
parallelism. In addition, they may introduce portability problems.

Vendor specific approaches have other degrees of limitation. For instance,
BusinessObjects is an analytical tool for summarization, visualization and re-
porting, not designed to be used as a framework to generate analysis that can
be deployed operationally [5].

3 Problem Statement

PLUS is a data analysis environment that is used to extract meaningful infor-
mation from large amounts of transactional data. The system comprises data
loading, transformation and analysis. Report generation and information nav-
igation (e.g. drill-down capabilities) is performed by an external system, the
integration of which is beyond the scope of this paper. PLUS provides an ex-
perimentation environment for data analysts to create, test, execute and store
analysis algorithms. Once defined and tested in PLUS, analyses can be deployed
operationally on a business environment.

PLUS is currently used in the banking/finance domain in applications such
as money laudering and fraud prevention. To date PLUS has been applied to
analyze two million transactions over a historical period of two years, comprising
over twenty gigabytes of data.

From an analyst point of view, PLUS is an experimental framework for the
development of analysis algorithms. Based on data held within the system, or ex-
ternally in a file, the analyst defines algorithms that are deployed into the PLUS
framework. Analyses can be divided in logical stages, having intermediate results
persisted for user consultation. Algorithms are stored by PLUS, so they can be

4 Leticia Duboc, Tony Wicks, and Wolfgang Emmerich

re-executed whenever required. As an example, the analyst can produce from
transactional data summary information that may be reused by later analyses.
If new transactional data is added or a stage’s algorithm is modified, the system
automatically updates itself, maintaining a consistent state. Figure 1 illustrates
those dependencies. Note that analyses can also be dependent on multiple pre-
vious results.

so on…

Input data
file

Input data
table

Reference
data

A data
analysis

Dependent
analysis

Dependent
analysis

Multiple
sources
analysis

load
build analysis

build
dependent

analysis

build
dependent

analysis

build
dependent

analysis

Fig. 1. Dependent Analysis

From an operational point of view, PLUS deals with large amounts of trans-
actional data. Sampling capabilities allow analysis strategies to be tested before
being applied to the whole set of data. PLUS also provides means to split analyses
into logical and operational units of work. Analyses can be executed in parallel
based on pre-defined analytical criterias. Dependencies are self-managed using
inversion of control. Each analysis know its own dependency and this informa-
tion is used by PLUS to compose individual components, so that changes can
propagate through the system. Further, PLUS provides instrumentation through
a web interface. Analyses parameters can be modified and their execution con-
trolled.

We now introduce the main requirements for PLUS that led to the selection
of the lightweight technologies described in this paper.

Support complex and changing data model: BI systems often maintain months
or even years of detailed transactions. Analyzing such large volumes of data
to identify trends, patterns and exceptions is a very complex process. PLUS
required a rich data model that allowed algorithms to take advantage of object-
oriented features, simplifing the analysis process. In addition, the data model
had to be independent of the underlying database schema, offering a level of
abstraction and simplifying its implementation.

Support for experimentation: When dealing with large amounts of data, it may
not be clear from the outset how best to extract meaningful information. Ana-
lysts often try many different approaches in order to derive a comprehensive set
of algorithms capable of obtaining relevant information from the data.

PLUS architecture had to provide efficient means for experimentation. Such
features included support for fast development, deployment and test of analyses.

Experience with Lightweight Distributed Component Technologies 5

The work to define analysis algorithms had to be reduced to a minimum, ideally
being tool-supported. The analyst was enabled to concentrate on the business
logic and leave other time-consuming, non-core requirements to be addressed
automatically by the system.

Ability to incorporate new analyses: To experiment efficiently with data anal-
ysis strategies, analysts had to be able to extend the system to support new
algorithms with minimum effort. It was also a requirement that newly created
analyses could be easily deployed and immediately incorporated, without affect-
ing the running of the overall system.

Repeatable process and fast turnaround: In general, BI systems deal with very
large amounts of data. Testing analysis algorithms against the whole data is,
most of the time, inefficient and unnecessary. The system had to offer sampling
capabilities and means to store algorithms that, once tested and tuned, could be
applied to the whole data.

A second and more important reason for supporting storage and subsequent
execution of algorithms was the dependent nature of analyses. This observation
is further explained by the next requirement.

Maintaining consistent and accurate view of data: Load of new data and changes
in algorithms will, almost certainly, impact downstream analyses. Immediately
reflecting those changes is crucial, as BI systems should maintain a consistent and
accurate view of information. Given the complexity dependencies may assume,
manual update would be time consuming and error-prone.

PLUS had as a requirement to offer means to automatically update depen-
dent analyses in face of changes. It is important, however, to have in mind that
PLUS provides an environment for experimentation. Tests cannot impact already
deployed analyses. PLUS had therefore to allow the deactivation of dependent
analyses, while others are under test.

Execution control: Control over execution should offer, at a minimum, the ability
to start, stop, restart, resume and change analysis properties.

Scalability and Performance: Support for scalability is not unique to BI systems.
However, it is of significant importance, considering the large amount of calcula-
tions performed by algorithms. It was therefore a requirement that PLUS could
accommodate new analyses and update existing ones with minimum impact on
the system performance.

The requirements above demand a flexible, loosely coupled architecture that
can be easily extended. A component-based architecture comes as a natural
choice, allowing data analyses to be encapsulated by loosely coupled components
that can be plugged into the system with relatively little effort.

6 Leticia Duboc, Tony Wicks, and Wolfgang Emmerich

4 Business Intelligence Systems with J2EE?

Initial investigations of the implementation considered the J2EE specification
and, in particular EJB and JMS. At the time, like other Java developers, we
went through a learning curve. Currently, many of the issues we faced are well
documented in literature [19]. Our experience is summarized here:

– We considered using Entity Beans with container managed persistence for
the persistence layer in order to achieve data independence from the database
schema. This approach did not work because Entity Beans were designed to
be stateful distributed components, not lightweight domain objects. In addi-
tion, despite the support for relationships, EJBs impose restrictions on the
object format. Need for rich data models is not unique to BI systems and for
all such cases EJB container-managed persistence represents according to
[19] is limited by ”tight coupling, obscure development models, integrated
concerns and sheer weight”. PLUS had as a requirement the ability to persist
any Java object, so it could take advantage of OO/Java features, like inher-
itance and polymorphism. The use of EJB container-managed persistence
was therefore discarded.

– The structure of database tables often does not match the structure of the
logical entities they represent. Sometimes, even when objects differ from their
exterior design, internally they still need to take advantage of the database
structure to increase performance and achieve scalability. Examples include
logically separated entities that map to the same denormalized table, a sin-
gle entity that maps to multiple tables and given table (e.g. address) that
is referenced by other tables (e.g. order and customer) with no explicitly
relationship. CMP Entity Beans cannot naturally handle such cases [17].

– EJB QL allows additional finder methods to be defined in the Entity Bean
home interface, associating each one of them with an EJB QL query in the
deployment descriptor. This constraint means that the query logic had to be
defined in the entity bean. For PLUS, which have different analyses using
the same domain objects, the logic should be in the analysis class instead of
in the entity bean. This approach does not only simplify the entity bean, but
also makes analysis objects self-contained, providing a better understanding
of the encapsulated algorithm.

– The EJB specification does not include management capabilities, despite the
fact that it is implemented by some vendors. Using vendor specific features
is not desirable, as it compromises the portability of the solution.

– JMS supports the asynchronous communication between distributed com-
ponents. It is integrated with the EJB specification through message beans
that are invoked when messages arrive on a queue. We considered imple-
menting a publish/subscribe mechanism to maintain system concistency, us-
ing JMS and Message Beans. We concluded that the result would have been
too heavyweight. JMS is intended for asynchronous communication between
distributed components. Therefore, messages usually carry heavy payloads
and have a significant deployment overhead for queues and their persistent

Experience with Lightweight Distributed Component Technologies 7

storage. We did not need these heavyweight mechanisms as all we required
was to trigger re-execution of dependent analyses.

One can argue that EJB could be integrated with JMX for management
purposes and with a flexible object persistence mechanism, such as Hibernate
or Oracle TopLink, for the data modelling [15, 20]. For PLUS, however, JMX
and Hibernate themselves are sufficient to address the system requirements, as
explained in Section 5.2.

5 Implementing BI with Lightweight Technologies

5.1 Overview of Technologies

Selecting the appropriate set of technologies to implement an architecture that
then fulfils the requirements is a challenging task, particularly since there is a
complex inter-dependency between the use of particular forms of infrastructure
and the architectures that they induce [8]. This section describes the technologies
used in PLUS, along with the reason they have been chosen.

JMX: Java Management Extensions (JMX) provide the flexibility, interoperabil-
ity, and dynamic management capabilities that are required for a service-driven
network [12]. This work uses the JBoss implementation of the JMX specifica-
tion. JBoss [10] is, itself, built around JMX. Our BI system architecture takes
advantage of JMX, by implementing data analysis algorithms as JMX services.

JMX is particularly useful in the BI setting because:

– systems need to maintain an up-to-date and accurate view of information.
Services can benefit from the JMX event-mechanism to re-calculate analyses
if other services modify data they are dependent upon.

– analysis services can be hot-deployed into the JMX Server, being instanta-
neously recognized and incorporated into the system.

– the JMX instrumentation mechanisms allow a fine-grained control over ex-
ecution and configuration of services.

Hibernate: Hibernate is an open-source object/relational mapping toolkit with
facilities for data retrieval and update, transaction management and database
connection pooling [20]. Hibernate was chosen in the PLUS architecture for the
following reasons:

– BI systems usually have a complex and evolving data model. Unlike EJB, Hi-
bernate provides a very flexible O/R mapping, designed to naturally persist
objects following the common OO/Java idiom.

– PLUS strives for flexibility, giving the analyst the option to run analyses
as simple standalone applications. Unlike the EJB persistence mechanisms,
Hibernate can run from outside an application server, as it does not impose
as many requirements on the objects to be persisted.

8 Leticia Duboc, Tony Wicks, and Wolfgang Emmerich

– Hibernate can be managed via a JMX Standard MBean, providing a conve-
nient means to modify database related properties through the JMX console.

– Hibernate provides tools for code, mapping files and database schema gen-
eration. Shifting effort from labour intensive tasks, not only lets the analyst
focus on business related problems, but also gives support for experimenta-
tion.

XDoclet: XDoclet, officially termed a ”Javadoc metadata templating engine”,
parses metadata in Java source files and generates artifacts such as XML descrip-
tors and/or source code [21]. XDoclet is a natural choice when using Hibernate,
as mapping files and database creation scripts can be automatically generated
from tags in the Java object to be persisted.

Sun has announced metadata/annotations in J2SE 1.5. This new feature pro-
vides the ability to associate additional data alongside Java classes, interfaces,
methods, and fields. This additional data, or annotation, can be discovered at
runtime using the Java reflection API [6]. For PLUS, the ability to query meta-
data at runtime would mean that some properties files would not have to be
generated. J2SE 1.5 metadata, however, does not replace XDoclet as a code
generator.

5.2 PLUS Architecture

Analyses dependent nature and support for experimentation and demand a flex-
ible and loosely coupled architecture. A natural choice is to implement analysis
stages as independent components that can be easily assembled. Communication
is achieved through events, in a similar approach to SEDA [14], which consists
of a network of event-driven stages connected by explicit queues. It combines as-
pects of threads and event-based programming models to manage concurrency,
I/O, scheduling, and resource management needs of Internet services. The main
distinction between both approaches is that while SEDA intends to support a
massive amount of concurrent user connections, PLUS focuses on data process-
ing.

Easy of deployment, extensibility and management of components is achieved
by layering PLUS on top of JBoss implementation of JMX. Components are
represented by JMX services that can be dynamically deployed, being immedi-
ately incorporated to the overall system. PLUS services are generic components
deployed with a set of analysis algorithms. As JMX services, components are
exposed by JBoss JMX console for instrumentation.

Hibernate is placed between the JDBC layer and JMX services. It provides
a level of abstraction, allowing POJOs to be persisted in the database. Free
from constraints in input and output objects, analyses can take advantage of a
rich data model and OO features like inheritance and polymorphism. The use of
Hibernate is, however, not enforced. Analyses can have access to the underlying
JDBC layer if desired. Fig. 2 gives an overview of PLUS architecture.

Experience with Lightweight Distributed Component Technologies 9

JMX Server

Analysis
Service

obj
obj

obj

obj

Hibernate

JDBC

Database

Analysis
algorithm

Analysis
algorithm

Analysis
algorithm

Analysis
Service

Analysis
Service

Load
Service

data

Fig. 2. System overview

Services and Notification: In comparison with other distributed technologies
which often lead to complex interfaces between components, message or event
orientation creates a small number of simplified programming interfaces [9] [11].
This interfaces can be widely applied as the are not dependent on underlying
functionality and comprise simple message or event handlers, which allow simple
system re-configuration [7].

Given the amounts of data handled by PLUS, passing analysis results in
messages would be prohibitively expensive. In addition, analysis results are by
themselves useful information, which should be persisted. Hence, there is no need
for direct interaction between components. Analyses algorithms have knowledge
about their input and output data format, but are completely unaware of how
the input data has been produced. Simple events that informs of changes in the
input data are more appropriate than complex messages.

PLUS implements events through the JMX publish/subscribe mechanism.
Once notified, the service can update its analysis accordingly and inform other
services that are dependent on its results. Updated analysis results are there-
fore communicated through the system in an asynchronous way, maintaining
correlated analyses in a consistent state.

To receive notifications, a service needs to register as a listener of other ser-
vices that affect data it is dependent on. This includes already deployed services
and others that may be deployed in the future. The assembly of components
is implemented through inversion of control. Services have knowledge of the ta-
bles/hibernate objects they are dependent on. PLUS uses this information to
assemble components as publishers and subscribers. In addition, a newly de-
ployed service registers with the MBeanServer to be informed about the future
deployment of services that can change its input data. This mechanism guaran-
tees that dependencies are self-updated whenever a new service is deployed into
the system.

Furthermore, PLUS architecture provides a mechanism to avoid unnecessary
work when a notification is received. A service can recognise the changes in the
input data and update only the affected database rows or persistent objects
in the result. The ability to automatically maintain a consistent state offers
a significant support for experimentation. Hence, users do not have to worry

10 Leticia Duboc, Tony Wicks, and Wolfgang Emmerich

about downstream analyses that might be affected by the newly incorporated
algorithm.

Definition of analysis algorithms: As an experimental environment, PLUS should
provide a fast turnaround. Users must be able to quickly develop new analysis
strategies and understand existing ones. Code generation plays an important role
in rapid development and transparency. It can be used to avoid code duplication
and transparent models [19].

PLUS adopts a code-centric approach for the implementation of data loading
and analysis algorithms. This method requires from the analyst the implemen-
tation of a single Java task class. Each task encapsulates one analysis algorithm.
Tasks read data from an input source (e.g. file or tables), perform the required
computations and persist the results. The analyst embeds related meta-data in
the javadoc comments of the class source code using XDoclet tags. Meta-data
represent relevant information about the task, such as analysis specific proper-
ties, output data format and dependencies. Automatic generation of code and
support file encourages experimentation by considerably reducing the amount of
work done by the analyst.

To illustrate, Fig. 3 shows the XDoclet meta-data in a task’s code. In this
example, the task is dependent on the data in the BranchVolFin table and gen-
erates its result in the DistinctBranchVolFin table. The output data format is
explicitly defined in the task.output.java tag. The control-entities tag is an
example of an analysis specific property.

/**
* @task.input input-entity="BranchVolFin"
* control-entities="AnalysisFin.productId"
*
* @task.output.java name="DistinctBranchVolFin"
* fields="batch:long:6,
* productId:long:10,
* transactionType:long:7,
* analysisType:String:20,
* score:double:10"
*/

public class DistinctBranchVolFinTask extends ServiceTask {
...

}
Fig. 3. Meta-data in task code

XDoclet is used to automatically generate properties and configuration files,
Hibernate persistent classes, mapping files and even database tables. Most of
the code/file generation process did not have to be developed, as it came for free
with Hibernate and its integration with JMX. Fig. 4 illustrates part of the output
Hibernate object that XDoclet derived from the tags in Fig. 3.The Hibernate
object is simply a javabean object with XDoclet tags defining the format of the
columns in the database. The Hibernate mapping file is an XML document that
maps fields in the Java class to columns in the database. Tables themselves are
automatically created when analyses are deployed into the PLUS framework.

Experience with Lightweight Distributed Component Technologies 11

One can argue that code generation, as used in PLUS, combines concerns that
should be logically separated, such as code and database schema design. Coupling
code and configuration is certainly a downside. We have however opted for this
approach because, as an experimental environment, PLUS should provide a fast
turnaround. Having output object definitions as XDoclets tags in the task code,
helps not only in the generation of Hibernate code and database schema, but
also gives a better understanding of the analysis logic itself.

public class DistinctBranchVolFin {

/** Independent Identifier **/
private long id;

/** Batch id for this load **/
private long batch;

/** Output Fields **/
private long productId;
private double score;

/**
* @hibernate.id column="ID"
* type="long"
* length="10"
* generator-class="native"
*/
public long getId() {
return id;

} ...

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD

2.0//EN" "hibernate-mapping-2.0.dtd">

<hibernate-mapping schema="tdb">
<class name="DistinctBranchVolFinTask"

table="DistinctBranchVolFin"
schema="tdb"
dynamic-update="false"
dynamic-insert="false">

<id name="id"
column="ID"
type="long"
length="10">
<generator class="native“/>

</id>
...
</class>
</hibernate-mapping>

Fig. 4. Generated Hibernate Object

PLUS does not enforce any restriction in the way data is retrieved, pro-
cessed and stored by analysis tasks. Analysts may choose to use, for example,
the Hibernate query language or direct JDBC. It is worth mentioning that, given
the complexity of data in BI systems, Hibernate will provide many advantages.
The very powerful object/relational mapping offered by Hibernate allows the
task to take advantage of object-oriented features, like inheritance, association,
composition and collections. The use of Hibernate also offers an abstraction
layer, simplifying the task code, and other facilities, like transaction manage-
ment, database connection pooling, programmatic as well as declarative queries
and declarative entity relationship management. As an example, consider dis-
tinct Hibernate objects representing credit and debit card transactions. Having
both extending from a common card transaction object, an analysis can take ad-
vantage of polymorphism to easily derive all card transactions in a given retailer
chain during the summer sales.

Experiments have shown that there is a small performance penalty for using
Hibernate. Nevertheless, specially in cases where the performance is constrained
by the analytical work, this penalty is not the overriding factor when opting for
one or the other approach. In an experiment, an analysis processing 10,000 rows
took 123.47 seconds with JDBC and 140.19 seconds with Hibernate.

Execution and Instrumentation of Analysis: Scheduling and ordering of events is
an important concern when using a staged event-driven approach. In approaches

12 Leticia Duboc, Tony Wicks, and Wolfgang Emmerich

like SEDA [14], stages are responsible for defining their own scheduling policy for
incoming events. Examples of policies are FIFO (First In, First Out) and SRTP
(Shortest Remaining Process Time). PLUS uses events to maintain a consistent
state between correlated analyses. The framework is not designed to support a
large number of concurrent user connections, not having fairness in response time
as a major concern. For this reason, PLUS uses a simple FIFO policy, having
events processed in the order they arrive.

The event-based model is combined with thread level concurrency to enhance
performance. Despite encapsulating a single algorithm, many task instances can
be run simultaneously for different subsets of the data. The criteria for splitting
the work to be done into tasks is data analysis specific, since the algorithm
has to be consistent with the data set. For example, in a summary algorithm
that requires the month of a given transaction, it is reasonable to partition the
calculations according to the months, but not to days.

To handle the large amount of calculations required, PLUS uses a worker
/ task / controller architecture [13]. Workers are thread objects that execute
tasks. The number of workers, as well as other properties, can be dynamically
set and controlled through the JBoss JMX console. The analysis work is split
into several tasks, which are stored in a task provider and individually supplied
to workers. The controller creates and manages the execution of workers. It is
also the controller’s responsibility to respond to instrumentation requests (start,
pause, resume, complete, fail) sent through the JMX console. Fig. 5 illustrates
this architecture.

ControllerController

WorkerWorker

TaskTaskControllerController TaskTaskTaskTask

WorkerWorker

TaskTask

TaskTask

Fig. 5. Worker/Task/Controller Architecture

Tasks are themselves Hibernate objects that are persisted in the database,
as a “to do” list. Every time a task is completed, its Hibernate representation
is removed from the persistent storage. Duplicate tasks are not persisted, so
work is not unnecessarily executed. Adding this persistent nature to tasks only
required an auto-generated mapping file and database table. This approach adds
robustness to the solution, allowing the system to restart from where it has been
paused and recover in case of a failure.

Instrumentation of components is yet another feature provided for free with
JMX. Public methods of a service are automatically exposed through the JMX
console, offering the data analyst fine control over the execution. Users can mon-
itor task’s execution, set analysis specific properties, stop, start, restart, resume
and change the level of parallelism of services. Futhermore, the Hibernate inte-

Experience with Lightweight Distributed Component Technologies 13

gration with JMX provides the ability to modify the JDBC datasource proper-
ties, include/exclude mapping files and other features.

Scalability and Performance: Event based systems present a range of possibilities
for increased performance, data redistribution and operation. Implementations
can move to more performant realizations that use clustering, partitioning or
other methods to bring system capabilities benefits. Having the system composed
by self-contained components allows the use of clustered compute resources that
are available with most application servers. In our case, we can use the JBoss
clustering mechanism and apply it to the MBeans that execute services in order
to exploit real parallel execution (as opposed to interleaved concurrency on the
same CPU).

6 Lessons Learned

PLUS architecture evolved over time. This work involved investigation of tech-
nologies, experimentation with different designs and close interaction with ana-
lysts. Our experience is summarized below:

1. Persuasive industry driven technologies are not always the best solution.
Market leaders like Sun, BEA, Oracle and IBM are aggressively pushing
the use of “golden hammer” [4] [19] technologies like EJB. For PLUS, and
systems with similar characteristics, full J2EE solutions represent a high-
overhead with little benefits. Our experience with PLUS has shown that it
is possible to leverage benefits from lightweight open source projects and
industry standard mechanisms for component interoperability and commu-
nication. Hibernate, in particular, has proven to be able to handle complex
data models required by BI systems.

2. Having dependencies directly handled by the system removes the need for
scheduling, improving maintainability and management. Our previous ex-
perience in coordinating dependent components through scheduling mech-
anisms have proved to be error-prone and hard to configure and maintain.
Analysts were required to have an overall knowledge of the complete system,
so they could manually update dependencies when adding or removing com-
ponents. PLUS makes use of hot-deploy and inversion of control to assemble
components into a publish/subscribe model. Through information provided
by the components themselves, PLUS is able to automatically update depen-
dencies whenever they are added or removed from the system. This approach
requires less knowledge to deploy a module, as analysts only have to be aware
of the algorithm being developed and its input data format.

3. JMX provides a flexible approach for internal, and potentially external, man-
agement. JMX instrumentation has added significant support for experimen-
tation, as it allows changes to the system configuration at runtime. This fea-
ture also provides means for future optimizations, such as automatic resource
allocation for stages. In addition, as JMX is an open standard, PLUS can

14 Leticia Duboc, Tony Wicks, and Wolfgang Emmerich

be directly integrated with external management systems, such as Tivoli [1],
and operational environments.

4. A fundamental lesson learned was the importance of an optimal configura-
tion. A staged event-based architecture potentially increases the performance
of the system. However, the potential latency caused by both the granularity
of the tasks and the sizes of the data chunks processed by stages could yield
very poor performance. If stages were fully executed one after the other,
the time to completion would comprise the sum of individual stages execu-
tion times. PLUS logically splits analyses into units of work, firing events
when individual units have been completed. This approach enables depen-
dent components to start execution before previous stages have been com-
pleted, creating a pipeline effect. Maximizing the throughput of this pipeline
requires a careful design of analysis algorithms and eventing strategies.
Consider an example where the input data represents transactions on a given
retailer chain. A transaction has, among others, the following fields: “batch
identifier”, “month of the purchase” and “product identifier”. For this ex-
ample, assume that the two first fields coincide. Events informing changes in
the transactional data are based on the “batch identifier”. An over-simplified
analysis defines the number of products purchased by month. The experiment
started with 884,321 transactions, 10 batches and 100 different products. An
extra batch of 124,479 rows was added to the input table, forcing the analysis
to be recalculated. The following settings were tested:
– First, the analysis partitioned the work to be done in parallel tasks ac-

cording to “month of purchase”. This is a sensible choice, since the batch
coincides with the month of the transaction. The addition of a new batch
generated a single task that processed only the added batch. In this case,
the analysis completed in 10 seconds.

– In a second run, the work was split according to the “product identifier”.
This is not an appropriate selection, as the algorithm is based on months,
not products. Having tasks selecting the input data by product identifier
unnecessarily recalculates the number of purchase for every month. This
setting generated 100 tasks, one for each product identifier, and took 126
seconds to run.

– In a third experiment, the work was divided according to both “product
identifier” and “month of purchase”. This can be a reasonable choice if
the analysis component wants to take advantage of parallel execution
of tasks. In this case, again 100 tasks were instantiated, but the work
was only performed in the added batch. However, for this small sample
of data, 100 tasks were still an unnecessarily large number. Setting the
task to use a “modulo 10 function” on the product identifier creates 10
tasks which complete in 8 seconds.

There is a need for careful design of both architecture and analysis algo-
rithms to maximize process usage and gain scalability. As illustrated by the
example, selection of tasks split criteria will be analysis dependent. Initial
setting usually follow guidelines and final tuning can be done through ex-
perimentation.

Experience with Lightweight Distributed Component Technologies 15

5. Although we talk about PLUS as a single system, it is actually a framework
composed of four independent sub-projects. The adoption of sub-projects
has improved the development as their external use has helped to general-
ize requirements. Further, this approach has considerably improved PLUS
configuration management.

6. As to any tool, PLUS has been carefully designed to provide information
and encouragement for the data analyst. We believe that part of the system
success was the tight interaction of developers and analysts operating as
users.

7 Conclusion

This paper has described PLUS, a data analysis environment to extract mean-
ingful information from large amounts of data. PLUS can be classified as a BI
system and more broadly as a data-intensive application. In such systems, the
data process may be split into a sequence of dependent steps. These steps reduce
complexity and allow intermediate results to be available for other purposes.

PLUS uses an event-based architecture where large amounts of data are pro-
cessed by dependent stages. Having stages defined by loosely coupled and self-
contained components allows for modularity, extensibility and scalability. Stages
can be added and redefined for optimal configuration. Performance is improved
by in-process threading mechanisms within stages, having tasks parallel executed
in different subsets of the data.

Dependencies in the proposed architecture are handled through a publish /
subscribe event mechanism. Staged execution is triggered by events produced by
previous phases, freeing the system from providing scheduling mechanisms. Fur-
thermore, dependencies are self-managed, having stages automatically assembled
through inversion of control.

Instrumentation also plays an important role in PLUS. Finding the optimal
configuration may prove to be challenging. The ability to experiment, by con-
trolling the execution of stages and tuning of data process specific properties, is
a valuable feature for complex data analysis systems.

The proposed architecture caters for experimentation, allowing the system to
accommodate changes either in short periods or over time. Finally, the realization
of the design through the implementation of a real-world system has proven the
adequacy of lightweight technologies to large scale data processing applications.

Acknowledgments

The authors would like to acknowledge Dave Martin, Nicola Harris and Alok
Rana for their support in both development and review of this work.

References

1. Tivoli: Intelligent management software for the on demand world. Technical report,
http://www-306.ibm.com/software/tivoli/.

16 Leticia Duboc, Tony Wicks, and Wolfgang Emmerich

2. Searchspace: Enabling the Intelligent Enterprise. Technical report, April 2003.
3. Software Scoops - Insights on Software. Technical report, August 2004.
4. William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and Thomas J.

Mowbray. AntiPatterns: refactoring software, architectures, and projects in crisis.
John Wiley & Sons, Inc., 1998.

5. Business Objects. Businessobjects query and analysis. Technical report.
6. Calvin Austin. J2SE 1.5 in a Nutshell. Technical report,

http://java.sun.com/developer/technicalArticles/releases/j2se15, 2004.
7. G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure

to develop complex distributed systems. In Proceedings of the 20th international
conference on Software engineering, pages 261–270. IEEE Computer Society, 1998.

8. E. di Nitto and D. Rosenblum. Exploiting ADLs to Specify Architectural Styles
Induced by Middleware Infrastructures. In ”Proc. of the 21st Int. Conf. on Software
Engineering, Los Angeles, Cal.”, pages 13–22. ACM Press, 1999.

9. Lyman Do, Prabhu Ram, and Pamela Drew. The need for distributed asynchronous
transactions. In Proceedings of the 1999 ACM SIGMOD international conference
on Management of data, pages 534–535. ACM Press, 1999.

10. Marc Fleury, Scott Stark, and The JBoss Group. JBoss Administration and De-
velopment. John Wiley and Sons, Inc., 2002.

11. Ann Wollrath Samuel C. Kendall Jim Waldo, Geoff Wyant. Events in an rpc
based distributed system. In USENIX 1995 Technical Conference on UNIX and
Advanced Computing Systems, Mountain View, California, USA, 01 1995. USENIX,
Sun Microsystems Laboratories.

12. Juha Lindfors, Marce Fleury, and The JBoss Group. JMX: Managing J2EE with
Java Management Extensions. SAMS, 2002.

13. Anoop Mangat and Iain McLaren. Personal Communication, August 2000.
14. Matt Welsh and David E. Culler and Eric A. Brewer. SEDA: An Architecture for

Well-Conditioned, Scalable Internet Services. In Symposium on Operating Systems
Principles, pages 230–243, 2001.

15. Kirk Pepperdine. Oracle9iAS/TopLink By Example. Technical report,
http://otn.oracle.com/oramag/webcolumns/2003/techarticles.

16. Research System Inc. The interactive data language. Technical report,
http://www.rsinc.com/idl/.

17. P G Sarang, Kyle Gabhart, Andre Tost, Tim McAllister, Rahim Adatia, Matjaz
Juric, Ted Osborne, Faiz Arni, Jeremiah Lott, Vaidyanathan Nagarajan, Craig A.
Berry, Dan O’Connor, John Griffin, Aaron Mulder, and Dave Young. EJB Profes-
sional. Wrox Press Inc, 2001.

18. Sun Microsystems. Java message service specification 1.1. Technical report,
http://java.sun.com/products/jms/docs.html.

19. Bruce A. Tate and Justin Getland. Better, Faster, Lighter Java. O’Reilly Media
Inc., 2004.

20. Hibernate Team. Hibernate reference documentation 2.1.4. Technical report,
http://www.hibernate.org/hib docs/reference/en/html/.

21. XDoclet Team. Xdoclet: Attribute oriented programming. Technical report,
http://xdoclet.sourceforge.net/xdoclet/index.html.

22. The MathWorks. Matlab tutorial. Technical report,
http://www.math.ufl.edu/help/matlab-tutorial.

23. The OLAP Council. Olap and olap server definitions’. Technical report,
http://www.olapcouncil.org/research/glossary.htm.

