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Profiling mesenchymal tumors<p>A comprehensive study of the gene expression profile of 96 mesenchymal tumors identifies molecular fingerprints for most tumors in this group.</p>

Abstract

Background: Bone and soft tissue tumors represent a diverse group of neoplasms thought to
derive from cells of the mesenchyme or neural crest. Histological diagnosis is challenging due to
the poor or heterogenous differentiation of many tumors, resulting in uncertainty over prognosis
and appropriate therapy.

Results: We have undertaken a broad and comprehensive study of the gene expression profile of
96 tumors with representatives of all mesenchymal tissues, including several problem diagnostic
groups. Using machine learning methods adapted to this problem we identify molecular fingerprints
for most tumors, which are pathognomonic (decisive) and biologically revealing.

Conclusion: We demonstrate the utility of gene expression profiles and machine learning for a
complex clinical problem, and identify putative origins for certain mesenchymal tumors.

Background
Tumors of bone and soft tissue are a wide spectrum of benign
and malignant neoplasms (sarcoma) derived from mesenchy-
mal precursor cells (hereafter referred to as mesenchymal
tumors) [1,2]. Many show heterogeneous patterns of differen-
tiation or exhibit little similarity to differentiated mesenchy-

mal tissues, while others have diverse cellular morphology
(pleomorphism). Thus, specialist expertise is required for
diagnosis as the histopathology of mesenchymal tumors is
often overlapping or indistinct. With the introduction of neo-
adjuvant cytotoxic therapies, diagnosis has become even
more challenging as pathologists must rely increasingly upon
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needle core biopsies that produce only small quantities of tis-
sue for immunohistochemistry and histopathological diagno-
sis. Furthermore, molecular therapies have been developed
targeting oncogenic pathways that may transcend the current
histopathological categories.

The discovery of definitive oncogenic gene fusions for certain
mesenchymal tumors has aided pathologists greatly. These
include the EWS-ERG or EWS-FLI1 fusion transcripts for
Ewing's sarcoma (EWS) [3-5], or the SYT-SSX fusion tran-
script for synovial sarcoma [6,7]. Also, reverse transcriptase
polymerase chain reaction (RT-PCR) has become the gold
standard for diagnosis. These 'simple sarcomas' are ideal can-
didates for targeted therapy, with relatively stable karyotypes
and stereotypical molecular pathology [8]. Nonetheless,
chromosomal translocations are confirmatory for only a frac-
tion of mesenchymal tumors while those with complex kary-
otypes remain diagnostically challenging.

There are many gene expression microarray (GEM) studies
covering a range of mesenchymal tumors [9-28]. These stud-
ies have proved the general applicability of GEM for the diag-
nosis of mesenchymal tumors. Yet each study compares a
fraction of the mesenchymal tumors in isolation. They do not
address the spectra of disease nor the challenges of diagnostic
pathology, which deals with many confounding diagnoses.
Here we present a more comprehensive study encompassing
representative tumors derived from all mesenchymal tissue
types, as well as more poorly differentiated tumors.

Using a machine learning model, we assess the overall utility
of GEM for the diagnosis of 19 types of mesenchymal tumors.
We find both expected and unexpected relationships between
certain mesenchymal tumors, and ascertain expression fin-
gerprints for decisive diagnostic or pathognomonic features
for most tumor classes. These fingerprints give clues to the
etiology of several mesenchymal tumors.

Our machine learning model fits the data in two steps. The
first step incorporates biological assumptions by merging
related tumors into broader groups. Step two splits the
broader groups into specific tumors. This latter process is
derived by expert decision, rather than automated model
selection. We consciously mirror the clinical diagnostic
method of progressively resolving general differentiation
types into specific tumors in a branch-wise (or tree-like)
method. The use of a decision process structured by prior
knowledge (together with a well-suited feature selection algo-
rithm) gives our model an estimated error of about 0.1.
Although further study and validation will be required to
bring it to clinical use, we believe this method is a prototype
for the extension of GEM and machine learning to other com-
plex diagnostic problems. The GEM data from this study are
available from the European Bioinformatics Institute (EBI)
public repository ArrayExpress (accession no. E-MEXP-353)
[29].

Results
We determined the gene expression profile of 96 mesenchy-
mal tumors, representing 19 different sub-types, using the
Affymetrix HG-U133Av2 oligonucleotide GeneChip®. A
multi-dimensional scaling (MDS) of tumor samples using all
genes reveals much structure in the data (Figure 1). We chose
MDS rather than hierarchical clustering for a more compact
and comprehensible summary. An average linkage hierarchi-
cal clustering using the same distance matrix is given in Addi-
tional data file 1 online.

The differentiated tumors largely cluster in groups reflecting
common tissue types. Examples are the neurofibroma (NFB)
and schwannoma (SWN), the alveolar (ARMS) and embryo-
nal rhabdomyosarcoma (ERMS), and the well-differentiated
liposarcoma (WLS) and lipoma (LMA). Similarities in the
GEM profiles of malignant peripheral nerve sheath tumors
(MPNST) and monophasic synovial sarcoma (MSS) were pre-
viously reported and this relationship is supported in our data

Multi-dimensional scaling of all 96 mesenchymal tumor samplesFigure 1
Multi-dimensional scaling of all 96 mesenchymal tumor samples. There are 
19 types of tumor shown; the color coding of which is used consistently 
for all figures. All gene expression values were used to calculate the inter-
sample Euclidean distance matrix. The distances are translated here onto a 
two-dimensional plane using the classical cmd-scale algorithm of R. The 
stress of the plot was 0.34; an index of the goodness of fit between the 
original distance matrix and the MDS distance (see Materials and 
methods). WLS, well-differentiated liposarcoma; LMA, lipoma; MLS, 
myxoid liposarcoma; EWS, Ewing's sarcoma; FMT, desmoid fibromatosis; 
CHS, chondrosarcoma; CHB, chondroblastoma; ARMS, alveolar 
rhabdomyosarcoma; ERMS, embryonal rhabdomyosarcoma; DCS, de-
differentiated chondrosarcoma; MSS, monophasic synovial sarcoma; 
MPNST, malignant peripheral nerve sheath tumors; CMF, chondromyxoid 
fibroma; PMS, pleomorphic sarcoma; LMS, leiomyosarcoma; OS, 
osteosarcoma; CMA, chordoma; NFB, neurofibroma; SWN, schwannoma.
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[18]. Likewise, the relation between the small round blue cell
tumors: EWS, ARMS and ERMS is clear from this plot. An
interesting finding was the similarity of the chordoma (CMA),
a rare tumor arising along the midline to the chondrosarcoma
(CHS). Reflecting the experience of histopathological diagno-
sis, the osteosarcoma (OS), pleomorphic sarcoma (PMS) and
leiomyosarcoma (LMS) show the greatest diversity being dis-
persed throughout the other samples.

The MDS is based on distances calculated from the whole
molecular signature (all genes or probesets) (Figure 1). Thus,
confounding factors such as intercalating tissue, tumor site or
patient age and sex may affect the resultant pattern.

Supervised learning
The key to the success of supervised learning is to focus on a
small set of strongly distinguishing features, thus ignoring
confounding factors. Strong feature selection is appropriate
in this study as we have sound histological evidence that there
are underlying patterns to be uncovered (at least for most
tumors). This reduced set of features (or genes) gives a molec-
ular fingerprint of the tumors that is both diagnostic and
descriptive. Our feature selection method is suited to this
application as it selects ten genes evenly for each class. Using
a simple k = nearest neighbors (k-NN) machine learning algo-
rithm and the extended feature selection algorithm we
attempted initially to create a model for all tumors simultane-
ously (see Materials and methods section for more detail on
feature selection and k-NN algorithm). The overall cross-val-
idation error was 0.33 compared with a random guessing
error of 0.96 +/- S.E. 0.01 (see Materials and methods: clas-
sification algorithm). Therefore, even with this simplest
approach, the machine learning model is fairly successful.

The true error, and thus the generalization to other datasets,
is likely to be underestimated (see Discussion). However, an
important control shows that our method does not over-fit
the data excessively. In simple terms, the method does not
erroneously fit this particular dataset using random patterns.
After randomly permuting all the labels to create a semi-ran-
dom dataset we tried to cross-validate these false data (see
Materials and methods: classification algorithm). The error

was 0.94 +/- S.E. 0.01 (n = 10 permutations) so was therefore
not significantly better than random guessing (Table 1).

Two-step model
The majority of errors from the simple model above were as
expected between the adipocytic tumors LMA, WLS and
myxoid liposarcoma (MLS), between MPNST and MSS, and
between LMS, PMS and de-differentiated chondrosarcoma
(DCS). By considering unsupervised learning methods (MDS
and hierarchical clustering) plus biological assumptions and
trial-and-error, we arrived at an improved two-step method.
This was designed, in part, to mirror the thought processes
involved during clinical histopathological diagnosis. This
two-step model is, thus, expert derived and not an automated
procedure.

In step one, we grouped tumors into composite classes
assumed to reflect similar pathways or levels of differentia-
tion; MPNST/MSS, PMS/LMS/DCS, ARMS/ERMS, NFB/
SWN and LMA/WLS/MLS. In step two, we decomposed the
composite classes into their sub-types. This decision process
is illustrated in color code in Figure 2.

Using the same feature selection and learning algorithm as
the initial method, the new model is remarkably effective in
the first step with ~0.09 errors (9/96 errors). There were
important limitations, however, as we could not decompose
the adipocytic tumors fully in step two, yet recognized MLS as
distinct. Moreover, after compositing the spindle-like tumors
PMS/LMS/DCS in step one, we could not decompose this
artificial grouping. Accepting these limitations, the sum error
over both steps was 0.14 (n = 9 errors in step one, and n = 4
errors in step two). Note that the samples wrongly classified
in step two were classified correctly in step one thus having no
carry-over error in this particular dataset. The types of error
in step one are summarized in Table 2, and the error for each
component of step two is shown in Table 3.

Molecular fingerprints
Feature selection of genes was carried out for each fold of our
model, and while 237 distinct genes were encountered during
cross-validation only 61 were selected in every fold (96 folds

Table 1

Errors of the simplest machine learning model

Model (n = 96) Error +/- S.E.

Cross-validation 0.33

Random guessing (n = 10) 0.93 +/- 0.01

Re-permuted and cross-validated (n = 10) 0.94 +/- 0.01

We used leave-one-out cross-validation of all samples simultaneously. With random guessing we compared the matching of the true order of 
classification labels against a randomly generated set, which produces a baseline for cross-validation comparison. For re-permutation, the true labels 
were randomized to create a semi-random false dataset.
Genome Biology 2005, 6:R76
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Schematic of two-step modelFigure 2
Schematic of two-step model. In order to successfully classify the sarcoma with the minimum of errors a two-step approach was used. A mixture of single 
sarcoma and composite classes were used for prediction in step one. Then, in step two, composite classes were separated into their constituent tumors. 
* The SPIN (spindle-like) group comprising PMS, LMS, and DCS could not be separated by our model. ** The WLS and LMA could not be separated by our 
model but were distinct from MLS. ADIP, adipocytic tumors; RHAB, rhabdomyosarcoma.

Table 2

Frequency table of errors

ADIP CHB CHS CMA CMF EWS FMT MSS 
MPNST

NFB 
SWN

OS RHAB SPIN

ADIP 12

CHB 3

CHS 5 1 2

CMA 4

CMF 4

EWS 5

FMT 5

MSS 
MPNST

11

NFB SWN 8

OS 1 1 9

RHAB 7

SPIN 2 1 1 13

The frequency table shows the agreement between the sarcoma classes and the cross-validation prediction along the diagonal. The true numbers of 
tumors in each group can be calculated by summing the numbers in columns and the predictions of our model from summing the rows. ADIP, 
adipocytic tumors; RHAB, rhabdomyosarcoma; SPIN, spindle-like tumors.

Table 3

Errors of two-step machine learning model

Step one Error (absolute number)

All sarcoma (n = 96) 0.09 (9)

Step two

MSS and MPNST (n = 14) 0.14 (2)

NFB and SWN (n = 8) 0.125 (1)

ARMS and ERMS (n = 7) 0.14 (1)

LMA/WLS and MLS (n = 12) 0

Cross-validation errors for step one and two of our prediction model are shown. The algorithm focuses on these samples of each row in isolation. 
Note that all the samples wrongly classified in step two were correctly classified in step one.

FMT ADIP CHS

MLS ARMS ERMS NFBMPNSTMSS SWN

CHB RHAB OS CMF CMA EWSSPIN
MSS/

MPNST

WLS/
LMA

NFB/
SWN

*

**
Genome Biology 2005, 6:R76
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for leave-one-out cross-validation, see Materials and
methods: feature selection). This robust 61-gene signature is
illustrated in the gene-clustered heatmap of Figure 3. The adi-
pocytic tumors (LMA/WLS/MLS), rhabdomyosarcoma,
NFB/SWN, EWS, CMA, desmoid fibromatosis (FMT), and to
a lesser extent MSS and MPNST have clear signatures. The
CHS, chondromyxoid fibroma (CMF) and OS have less dis-
tinct patterns. However, the poorly differentiated spindle-like
tumors have no distinct pattern. Yet this does not prevent our
classification algorithm from recognizing the spindle-like
tumor group as a whole. Negative expression of all other
markers by the spindle-like tumors is informative to the k-NN
algorithm just as it would be to a histopathologist. Additional
data file 2 (sheet a) provides the gene information for Figure
3, including probeset identifications, full names, accession
numbers and references describing their relation to respec-
tive pathways of differentiation and/or involvement in
cancer.

From the molecular fingerprint used in step two we selected
genes used in the majority of cross-validation folds for display
in Figure 4. Again these genes are fully described in Addi-
tional data file 2 (sheet b) online and some are discussed
below.

Discussion
We demonstrate here the feasibility of using GEM and
machine learning to aid the diagnosis of mesenchymal
tumors. In contrast to previous studies, our work encom-
passes a wide range of mesenchymal neoplasms and reflects
the open-ended nature of histopathological diagnosis. It is
clear from unsupervised methods such as MDS that there is
information within the expression profile that can be further
refined (Figure 1). This complex problem is surprisingly trac-
table firstly because of the large number of definitive gene
markers associated with many of the tumors, especially the
well-differentiated groups. In machine learning terminology
we may state that these genes (or features) have no overlap in
their class distributions, while in histopathological parlance
their expression is pathognomonic. This would be rare in
prognostic studies, for instance, as certain patients with good
molecular signatures may still have poor outcomes due to
unobserved factors. Secondly, we have used a novel machine
learning strategy breaking this complex problem into soluble
steps. We have implicitly admitted limitations in our model
by not attempting to further decompose groups such as LMS/
PMS/DCS (spindle-like tumors) and WLS/LMA. Thirdly, we

have used a feature selection strategy that captures informa-
tion evenly on all the tumor groups. Further validation on
prospective samples is required before GEM studies are of
clinical use for the diagnosis of mesenchymal tumors.

Cross-validation of the first step of our model gives 0.09
errors. This is a useful guide but its accuracy should not be
overstated. A reliable estimate of error usually requires hun-
dreds of samples per class, and a leave-one-out estimation is
likely to underestimate error [30]. Moreover, there is the
problem of statistically uncontrollable bias in our wide but
shallowly sampled dataset [31]. However, our model is not
grossly over-fitted (see Table 2) and more importantly the
generalization to other datasets is clear from the biology of
the molecular fingerprints (arising from feature selection).
These fingerprints may be useful as the basis of a custom
diagnostic chip and also provide insight into the etiology and
cell of origin of certain tumors (see Additional data file 2
(sheets a and b online).

Several of the fingerprints are clearly related to the metabo-
lism or function of differentiated mesenchymal tissues. For
instance, adipocytic tumors are identifiable by their lipid-
associated genes such as perilipin (PLIN), lipoprotein lipase
(LPL), and glycerol-3-phosphate dehydrogenase 1 (GPD1)
(Figure 3a). Similarly, rhabdomyosarcoma are characterized
by genes such as cholinergic receptor alpha (CHRNA1) and
receptor-associated protein of the synapse (RAPSN) associ-
ated with the musculoskeletal synaptic junction (see Figure
3b and Additional data file 2 (sheet a) online for supporting
references).

When resolving these classes further in a second classification
step some of the fingerprints reflect degrees of differentia-
tion. Thus, the ARMS is defined by its higher expression of
tropomyosin-2 (TPM2), skeletal muscle actin (ACTA1) and
myosin-light polypeptide-4 (MYL4), indicative of more
maturity than the ERMS (see Figure 4a and 4b and support-
ing references in Additional data file 2 (sheet b) online).

Within these highly focused signatures there are clues to the
origins of some of the poorly differentiated tumors. One strik-
ing similarity of gene expression is between the MPNST and
the MSS (see Additional data file 1). The MSS have a simple
karyotype consisting of an aberrant SYT-SSX fusion. The
MPNST have a complex karyotype and are believed to arise
from Schwann cell precursors (they are more malignant than
SWN and frequently associated with NF1 mutations [32])

Pathognomonic fingerprints for many tumor typesFigure 3 (see following page)
Pathognomonic fingerprints for many tumor types. In step one of our model, 61 genes were used in all folds of cross-validation. Average linkage clustering 
of this geneset reveals strong sets of distinct genes for many single mesenchymal tumors or composite groups. The sample types are color coded as 
before. A, adipocytic tumors; B, rhabdomyosarcoma; C, NFB/SWN; D, EWS; E, CMA; F, FMT; G, MSS/MPNST; H, CHB; I, CHS; J, CMF; K, OS; L, spindle-
like tumors.
Genome Biology 2005, 6:R76
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Figure 3 (see legend on previous page)
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Figure 4 (see legend on next page)
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derived from the neural crest rather than the mesenchyme
[12]. Both MPNST and MSS are aggressive and poorly differ-
entiated. Their composite signature (Figure 3g) contains the
gene Endothelin-3 (EDN3), a key molecule in the
development of the neural crest. EDN3 promotes self-
renewal of multi-potent neural crest precursors or de-differ-
entiation of matured cell types including Schwann cells [33-
35].

Despite their similarity, the MPNST and MSS have distinct
molecular signatures (Figure 4c and 4d) as do the NFB and
SWN (Figure 4e and 4f), which are typically difficult to distin-
guish immunohistochemically. For instance, SWN but not
NFB express the secreted glycoprotein WNT5A recently
linked to metastases of OS [36] and melanoma [37]. Yet SWN
is a benign tumor that never metastasizes.

Some genes could make useful monoclonal antibodies for
immunohistochemistry. Genes such as the myxoid liposar-
coma-associated transcript-4 (MLAT4), which as its name
suggests distinguishes MLS from WLS/LMA (Figure 4g and
4h), appear to have been identified in molecular screens but
not pursued as markers thus far. The overall expression of
MLS is intriguing as it shows similarities to the putative neu-
ral crest tumors MPNST and MSS and the small round blue
cell tumors ERMS, ARMS and EWS. Similarly, the fingerprint
itself contains early mesenchymal and neural development
genes (EMX2, SOX11), and neural restricted genes (SHANK2;
a post-synaptic molecule). The profile also confirms previous
reports of the expression of the immunotherapeutic targets
PRAME and CTAG-1 (also known as NY-ESO-1) [38]. These
are so-called 'germ cell antigens' because of their restriction
to the testes of healthy males.

There is another clue to cellular origin within the CMA finger-
print. The overall expression pattern of CMA is closely related
to the chondroblastic tumors CHS and chondroblastoma
(CHB) (Figure 1). Likewise, the CMA are known to commonly
contain focal regions of chondroid differentiation or more
rarely chondrosarcomatous elements. As the tumor occurs
solely along the midline it is proposed to originate from rem-
nant notochord, an embryonic structure that is known to per-
sist at least into infancy [39,40]. The expression of the
brachyury (T) which is highly expressed in developing noto-
chord strongly supports this theory [41,42].

Not all tumors had distinctive markers. The LMS, PMS and
DCS were not distinguishable from each other. Cross-valida-
tion of our model in step one was fairly successful as our algo-

rithm collectively recognized these tumors through a lack of
specific markers, perhaps analogous to the way in which his-
topathologists recognize them (Figure 3l). At least part of the
success of our model in step one is that it incorporated this
uncertainty implicitly by compositing these tumors into a sin-
gle 'spindle-like' group.

There are a number of extensions to the current study that
may bring GEM technology closer to clinical use. Firstly, a
larger study focusing on the poorly modeled cases (PMS/
LMS/DCS) may help to elucidate categories supplementing
current histological guidelines. Yet the pleomorphism and
complex karyotypes of some mesenchymal tumors may con-
fer a continuum of molecular pathology irreducible to simple
categories. Such an analysis is unlikely to find adherents if it
does not correspond with an improved interpretation of the
histopathology or with appreciable clinical differences such
as prognosis.

Secondly, by sampling all groups more thoroughly we could
manage uncertainty. Our model gives a simple prediction of
tumor type appropriate for the broad base and low sample
numbers in our dataset. A more nuanced approach would be
to calculate a probability of tumor type. This could be
achieved most simply using Bayesian classifiers that implic-
itly calculate class membership probability. Thus in a clinical
setting a sarcoma could be identified to a histopathologist as
a central or classical example of its type, or be highlighted as
an uncertain outlier for further immunohistochemical
examination.

Thirdly, there is a large quantity of relevant molecular infor-
mation that may transcend the diagnostic categories
investigated here, yet may have prognostic significance.
There is great interest, for instance, in both drug-resistance
genes [43] and signatures associated with metastasis [44],
which are common to a number of different tumor groups.
Finally, a custom chip and user-friendly software that incor-
porates both a predictive model and such additional knowl-
edge needs to be developed. This package might incorporate
a prediction algorithm, visualization tools, plus additional
housekeeping genes to aid normalization and quality con-
trols. The molecular fingerprints shown here and fully listed
in the additional data files (Figure 3 and 4 and Additional
data file 2 online) could form the core of such a custom chip.

Pathognomonic fingerprints step twoFigure 4 (see previous page)
Pathognomonic fingerprints step two. Molecular fingerprints of genes for A and B: ARMS and ERMS; C and D: MSS and MPNST; E and F: NFB and SWN; 
G and H: WLS/LMA and MLS. We have selected genes based upon their inclusion in the majority of folds of cross-validation then clustered them by 
average linkage.
Genome Biology 2005, 6:R76
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Materials and methods
Tumor specimens
Tumor biopsies were obtained from 96 participants present-
ing at the London Bone and Soft Tissue Tumour Service
(Royal National Orthopaedic Hospital, Stanmore and Univer-
sity College London Hospitals, London), Great Ormond
Street Hospital, London, or the Nuffield Orthopaedic Center,
Headington, Oxford, in the UK. The diagnosis was deter-
mined by pathological examination using criteria established
by the World Health Organization (WHO) tumor classifica-
tion of soft tissue and bone tumors [45]. Where necessary,
RT-PCR was performed to confirm common translocations
(such as EWS, ARMS, MLS and synovial sarcoma). Ethical
committee approval was obtained from all three treatment
centers for the collection of fresh samples for this study. Clin-
ical data such as diagnosis, site, grade and stage, age and sex
are summarized in Additional data file 3 online. Patient biop-
sies were snap frozen with liquid nitrogen prior to RNA
extraction and stored at -70°C.

Nucleic acid extraction
Frozen sections from each tumor sample (needle core or
resection) were examined microscopically prior to RNA
extraction to confirm that the sample was representative and
contained more than 80% tumor cells. Total RNA was
extracted from adjacent tissue sections with >80% tumor cell
content, using TRIzol™ reagent (Invitrogen Ltd, Paisley, UK)
followed by purification with RNeasy columns (Qiagen Ltd,
Sussex, UK) according to the manufacturer's instructions.
RNA quality and quantity was assessed using RNA 6000
Nano chips on Agilent 2100 Bioanalyser according to manu-
facturer's instructions (Agilent Technologies UK Ltd, Chesh-
ire, UK). Our RNA quality-control threshold for the rRNA
peak ratio was 28s/18s ≤ 2.

Microarray processing
The biotinylated hybridization target (biotin cRNA) was pre-
pared from 10 µg of total RNA as previously described
[46,47]. The quality and quantity of the biotinylated cRNA
was checked prior to hybridization using the RNA 6000 Nano
chips on Agilent 2100 Bioanalyser according to manufac-
turer's instructions. A total of 20 µg of the biotinylated probe
was hybridized to Affymetrix HG-U133A Human GeneChips
(Affymetrix®, Santa Clara, CA, USA) according to manufac-
turer's recommendations. In cases where smaller amounts of
total RNA were obtained (EWS and rhabdomyosarcoma <5
µg total RNA), 150 ng of total RNA was subjected to two
rounds of amplification to obtain a biotinylated cRNA yield of
20 µg according to Affymetrix recommendations (Genechip®

Eukaryotic small sample target labeling assay version II).
Parallel hybridizations of probe synthesized from 10 µg and
150 ng (via single and double amplification respectively) for
the same tumor sample were found to have similar quality-
control and expression profiles (see ARMS, EWS samples in
Figure 1). Hybridization of the synthesized biotinylated
probes and scanning of the images were performed as

previously reported according to Affymetrix recommenda-
tions [46,47].

Data analysis
Data analysis was carried out using the R statistical environ-
ment and programming language [48]. We extensively used R
software packages from Bioconductor [49], an open source
bioinformatics resource. We used the 'affy' package written to
handle Affymetrix data, and specifically the 'rma' algorithm
for pre-processing, normalizing and calculation of expression
values [50,51]. A modified version of the 'ipred' package was
used for cross-validation and machine learning [52] together
with the 'limma' package which was used for feature selection
[53] (both described more fully below).

Hierarchical clustering and MDS
The Cluster and Treeview software packages were used to
produce the average linkage hierarchical clustering shown in
Figure 3 and 4 (correlation distance) [54]. MDS was chosen
for Figure 1 instead of hierarchical clustering as this captured
the complexity of the data optimally within the space availa-
ble. We used the classical MDS method (or principle coordi-
nates method part of the R 'base' package) [48]. The stress
metric measures distortion required to plot high-dimensional
data [55].

Classification algorithm
We chose simple k-NN pattern classification to model the
data. This is a non-parametric algorithm, here based upon a
table of inter-sample Euclidean distances [56]. The identity of
an unknown (or test) sample is attributed by majority vote to
that of the k = 3 nearest neighbors. We chose k = 3 due to the
limiting minimum of three samples in our smallest class
(DCS). The k-NN method was comparably effective to other
methods tested (linear models, support vector machine,
Bayes classifier; results not shown). We used leave-one-out
cross-validation to estimate the error of our model. This
method iteratively builds a predictive model from all combi-
nations (or folds hereafter) of the data excepting one sample.
The excepted sample is used to test the model error, the error
being the proportion of inaccuracies from all folds. The mul-
tiple tumor classes and the limited number of samples in each
class are unsuitable for accurate estimation of the classifica-
tion error. This is therefore only a useful guide as the finger-
prints are more important than the error. As a guide only, we
used a permutation test to calculate the baseline error that
might be expected from random guessing. Simply, this
involves randomly permuting the class labels of the data ten
times and counting the fraction of correctly corresponding
labels with the original labels. To assess potential over-fitting
we repeated this random permuting of the data class labels
ten times but asked the computer to model the data and
cross-validate, each time counting the fraction of errors. This
does not, however, demonstrate a lack of over-fitting but
merely a lack of gross over-fitting.
Genome Biology 2005, 6:R76
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Feature selection
As most expression data are uninformative, or even con-
founding of pathological categories, feature selection is incor-
porated into each fold of cross-validation. For multi-class
models we used a well-suited feature selection method to cap-
ture information from each of the 19 tumor classes (not to
split classes in step two). The algorithm selects 10 genes for
each class that are different in expression from all others. We
tested 5, 10, 20 and 30 gene sets finding 10 to be sufficient
(better than 5 or 30 and as good as 20). We used the 'limma'
method for each comparison [53]. Limma uses a variant of
linear models with an empirically moderated estimate of the
standard error effectively borrowing information from the
ensemble variance of genes to aid inference about individual
genes. This gives improved statistical power for small sample
sizes.

Additional data files
The following additional data are included with the online
version of this article: an average linkage hierarchical cluster-
ing of the tumor samples using the same distance matrix as in
Figure 1 (additional data file 1), a table providing the gene
information for Figures 3 and 4 (additional data file 2) and a
table containing clinical and pathological details of all sam-
ples used in this study (additional data file 3).
Additional data file 1Average hierarchical clustering of tumor samplesAverage hierarchical clustering of tumor samples. The same set of inter-sample distances were used as in Figure 1. The cophenetic correlation of this clustering, a measure of the summary quality, was 0.71.Click here for fileAdditional data file 2Supplementary information on the genes shown in Figures 3 and 4Supplementary information on the genes shown in Figures 3 and 4 in Worksheet S2A and S2B respectively. This includes references to the function of genes that lend support to our model feature selec-tion, plus references the previously reported role of many genes in cancer.Click here for fileAdditional data file 3Clinical and pathological details of all samples used in this studyClinical and pathological details of all samples used in this study.Click here for file
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