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The existence of low frequency waveguide modes of ion acoustic waves is demonstrated in magnetized

plasmas for electron temperatures striated along the magnetic field lines. At higher frequencies, in a band

between the ion cyclotron and the ion plasma frequency, radiative modes develop and propagate obliquely

to the field away from the striation. Arguments for the subsequent formation and propagation of

electrostatic shock are presented and demonstrated numerically. For such plasma conditions, the

dissipation mechanism is the ‘‘leakage’’ of the harmonics generated by the wave steepening.
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The formation of shocks as described by Burgers’ equa-
tion [1] can be understood as a balance between the energy
input by an external source (a piston moving with velocity
U, for instance) and viscous dissipation, with kinematic
viscosity coefficient �. In one spatial dimension, this non-
linear problem can be solved exactly by a Cole-Hopf trans-
formation to demonstrate, for instance, that the shock
thickness varies as ��=U with the basic parameters of
the problem. In principle, Burgers’ equation can apply for
any continuous viscous fluid media, also plasmas.
Experiments performed in the strongly magnetized plasma
of the Risø Q machine [2] demonstrated that for moderate
electron to ion temperature ratios Te=Ti, the strong ion
Landau damping prohibited the formation of shock. For
large temperature ratios, the ion Landau damping is re-
duced, and there is a possibility for forming steady state
nonlinear shocklike forms, propagating at a constant speed
[2,3].

In the present study we present a novel mechanism of an
effective energy dissipation, selective radiation or ‘‘leak-
age’’ of short wavelength ion sound waves. We also dem-
onstrate that electrostatic shocks can form as a balance
between these losses and the standard nonlinear wave
steepening as described by the nonlinear term in the ‘‘sim-
ple wave’’ equation, @u=@tþ u@u=@z ¼ 0, [1,4]. Studies
in two spatial dimensions are sufficient for illustrating the
basic ideas, and the analysis of the present Letter is re-
stricted to 2D.

Magnetized plasmas are considered here for conditions
where the electron temperature Te varies in the direction
perpendicular to an externally imposed homogeneous
magnetic field [5,6]. Such conditions occur often in nature
for plasmas out of equilibrium [7]. For the present analysis
it is essential that the ion cyclotron frequency is smaller
than the ion plasma frequency, i.e., �ci <�pi. The rele-

vant frequencies are assumed to be so low that an inertia-
less electron component can be taken to be in local
Boltzmann equilibrium at all times. We assume quasineu-
trality, ne � ni. For a linearized fluid model, we readily

derive a basic equation in the form
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where c is the electrostatic potential, related to the relative
density perturbations as ec =Te ¼ � � n1=n0. Since we
are here only interested in cases where Te=Ti � 1, we took
Ti ¼ 0 in (1). In case Te ¼ const, a linear dispersion
relation is readily obtained from (1) by Fourier transform-
ing with respect to time and space. This dispersion relation
contains two branches, one for !<�ci and one for�ci <

!<�pi, the latter containing also the ion cyclotron

waves. The wave properties of the two branches are very
different, as illustrated best by the angle between the group
velocity and the wave vector [6]. For very low frequencies,
! � �ci, these two vectors are almost perpendicular,
while they are close to parallel when! � �ci. In the limit
k? ! 0, the dispersion relation reduces to ð!2 ��2

ciÞ�ð!2 � k2C2
sÞ ¼ 0 containing ion sound waves and the

electrostatic ion cyclotron resonance.
If we let Te ¼ TeðxÞ, with z along the magnetic field B

and x in the transverse direction, we can still Fourier
transform with respect to time and the z direction. We
denote the Fourier transformed electrostatic potential by

ĉ . Normalizing frequencies and lengths so that � �
!=�ci and � � x�ci=Cs, respectively, we readily obtain
the expression

d2

d�2
ĉ ¼ ð�2 � 1Þ
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where we introduced a normalized propagation speed �2 �
ð!=kzÞ2ðM=T0Þ, and T0 is a reference temperature. Thus, �
measures the ratio between the phase velocity along the
magnetic field and a sound speed, so that � ¼ const would
correspond to exactly nondispersive wave propagation.
The expression (2) has the form of an eigenvalue equation,
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with 1=�2 being the eigenvalue. We present numerical
solutions in Fig. 1. In the low frequency limit !<�ci,
shown in the middle panel, the waves are confined to the
electron temperature striation (here denoted ‘‘waveguide
modes’’), corresponding to a discrete set of eigenfunctions

ĉ m, with mode number m. For the Gaussian profile TeðxÞ
considered here, the mode number m corresponds to the

number of zero-crossing of ĉ mðxÞ [6]. For the three-

dimensional problem we would have two indexes ĉ km

corresponding to the two directions perpendicular to B.

From ĉ m we can obtain the corresponding eigenmodes for
the B-parallel velocity uk. The value of � depends on �,

and we find for � ¼ 0, 14 ,
1
2 ,

3
4 , that �

2
0 ¼ 1:3942, 1.3805,

1.3311, and 1.2006, i.e., a relatively weak variation of �0

with �. We note also that the eigenfunctions change only
little in spite of the large change in�. Only for� close to
unity, say around 0.9 or larger, do we see significant

variations in ĉ 0ðxÞ and �0. For shallow temperature var-
iations and narrow temperature ducts, we have only the

lowest order mode ĉ 0ðxÞ. For � smaller than the minimum
value of TeðxÞ=T0 we have a continuum of eigenvalues with
corresponding eigenfunctions. In all cases we used T0 �
1
2 ðTeð0Þ þ Teðj1jÞ.

For!>�ci the right-hand side of (2) changes sign, and
the nature of the eigenmodes changes as well, to become
free modes as seen in the lower panel in Fig. 1. If we let the
electron temperature striation vanish to have a uniform Te,
then the free modes degenerate to two obliquely propagat-
ing plane waves.

We consider now the low frequency limit of the branch
of dispersion relation with !<�ci. For m> 1, the wave-
guide modes can decay for one m value to modes with
other m values. The m ¼ 0 mode has no decay to other
forward propagating modes, and will be the one considered
here. For this highest phase velocity mode, with eigenmode

ĉ 0ðxÞ, wave steepening will be the dominant nonlinearity
[1,4]. The nonlinear terms couple the various modes to give
products of x modes. These can be expanded as, for in-

stance, ĉ iðxÞĉ jðxÞ ¼
P

q�qij ĉ qðxÞ, where we assume that

by including the continuum part the set ĉ m is complete and
orthonormal [8]. For the lowest order waveguide mode we

have, in particular, �j00 ¼
R1
�1 ĉ 2

0ðxÞĉ jðxÞdx. For a large
class of relevant electron temperature profiles we can

ignore all higher order modes, and retain only ĉ 0, and

introduce here �0 �
R1
�1 ĉ 3

0ðxÞdx. For the Gaussian var-

iations of TeðxÞ studied here, we will have �0 > �j for all

j � 1, since ĉ 0 is the only eigenfunction that is positive
everywhere. To lowest order in the present low frequency

limit we have the relation eĉ =Te ¼ �̂ � ûk=Cs between

fluctuations in relative density and the velocity in the
B-parallel direction. Our arguments concerning the mode
structure therefore apply to the velocity variations as well.
Considering the limit of time scales much larger than the

ion cyclotron period, we find after some algebra the result

@uk
@t

þ ð�0uk 	 �TCs0Þ@uk@z
¼ 0; (3)

with uk ¼ ukðz; tÞ, where the numerical value of �T is that

of �0 in the limit of � ! 0. Small polarization drifts ? B
are ignored. We introduced a constant reference sound
speed Cs0. We anticipate that �T is here not much different

from �0, since the form of ĉ 0ðxÞ is close to TeðxÞ �
Teðj1jÞ. The solutions of (3) have the well-known steepen-
ing of the initial condition. The characteristic time for
wave breaking is approximately L=maxfukðt ¼ 0Þg,
where L is the characteristic scale length of the initial
perturbation along B and maxfukðt ¼ 0Þg is the maximum

value of the initial velocity perturbation. The model Eq. (3)

assumes ĉ 0ðxÞ and �0 being used also when �> 0, but
this approximation is acceptable for at least 0 
 �< 0:75,
as seen in the middle panel in Fig. 1. For the basic ideas
outlined in the present work, this restriction is of little
consequence. Polarization drifts become increasingly
larger as � is increased, but these do not affect the dy-
namics parallel to B, which is covered by (3).
If we initialize the system with characteristic wave-

lengths corresponding to frequencies ! � �ci, i.e., L �
Cs=�ci, the short time evolution will be governed by (3),
and we will have shorter and shorter scales developing as
for the usual breaking of waves [1,4]. This process is,
however, arrested when the characteristic length scales
become of the order of the effective ion Larmor radius
Cs=�ci, where the modes become radiating, and are no
longer confined to the waveguide. We propose a phenome-
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FIG. 1 (color). Illustrative examples of numerical solutions of
(2) for the electron temperature profile shown in the upper panel,
and defined by Teð�Þ=T0 ¼ 1� 1

2DþD expð��2=W 2Þ,
where W ¼ 4 and D ¼ 24=23. Waveguide mode solutions
for � ¼ 0, 1

4 ,
1
2 ,

3
4 are shown in the middle panel. Free modes

solutions obtained for� ¼ 5
4 ,

3
2 ,

7
4 , 2 and � ¼ 2 are shown in the

lower panel.
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nological expression for the process, best written in Fourier
space in a frame moving with Cs0, as

@ûk
@t

þ i
�0kk
2

ûk � ûk ¼ � ûk
T ðkkÞ

H
�
jkkj ��ci

Cs0

�
; (4)

with ûk ¼ ûkðkk; tÞ. The symbol � denotes the convolution

product and H is Heaviside’s step function. T character-
izes the time it takes for the energy of the!>�ci waves to
be lost from the waveguide. We have T ¼ T ðkkÞ, but it
will depend also on parameters such as the waveguide
width as well as the other plasma parameters. We expect
that increasing width gives increasing T , i.e., decreasing
shock thickness�. Within the present model the waveform
will steepen uninhibited until the shock thickness becomes
of the order of Cs=�ci, at which time the harmonic fre-
quencies will exceed �ci to become radiative and the high
frequency wave energy is lost from the waveguide.
Consequently, the B-parallel scale of the shock is con-
trolled by a quantity referring to the B-perpendicular
dynamics.

We study the nonlinear propagation of low frequency
waves in an electron temperature striated magnetized
plasma numerically by using a 2 1

2 -dimensional particle

in cell (PIC) code described elsewhere [6]. The code
assumes explicitly the electrons to be locally Boltzmann
distributed and the resulting nonlinear Poisson equation is
solved by iteration. We use a Gaussian variation for TeðxÞ
so that Teðj1jÞ=Ti ¼ 1, while Teð0Þ=Ti > 1, where Ti ¼
const. The width of the electron striation is here W ¼
28�Di ¼ 3:9Cs0=�ci. Several values of Teð0Þ=Ti were
investigated.

Results illustrating the waveguide and the free modes
are shown in Fig. 2. The properties are clearly different and
consistent with the interpretation given before. The wave-
guide modes are confined to the electron striation, while
the high frequency free modes are dispersing or ‘‘leaking’’,
consistent also with laboratory experimental results [5]. It
is important to emphasize that this apparent damping will
be found also in a fluid model. The observed effective
damping is caused by wave energy dispersing in space,
and dissipated by linear ion Landau damping outside the
electron temperature striations where Teðj1jÞ=Ti ¼ 1 in all
cases considered. Each step in the process is formally time
reversible. In order to emphasize the physical effects we
discuss here, we consider only high temperature ratios,
Teð0Þ=Ti � 25, in order to reduce the effects of linear as
well as nonlinear ion Landau damping. Such high tem-
perature ratios (even as large as Te=Ti ¼ 100) can be
obtained in discharge plasmas under laboratory conditions
[9]. For nonlinear waves described by a Korteweg–de Vries
(KdV) equation, a shocklike structure is followed by Airy-
type ripples, originating from the dispersion term in the
KdV equation. These ripples are absent in our results, see
Fig. 3. Likewise, at the high temperature ratio used here
(withCs0 � uth;i, the ion thermal velocity), we find no ions

being reflected by the shock. A backward propagating
rarefaction wave is of no concern here.
In Fig. 3 we show an example of the formation and

propagation of a shock. The initial density has an error
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FIG. 2 (color). Examples of numerical simulations showing
the variations of the normalized potential � ¼ ec =Ti as a
function of position at a fixed time. The electron temperature
enhancement is localized as a Gaussian in the x direction. We
have ! ¼ �pi�=5 in both cases while �ci=�pi ¼ 0:05 and

�ci=�pi ¼ 1 in the left and right panels, respectively. We have

here Te=Ti ¼ 50. For clarity, only a part of the simulation
domain is shown.
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FIG. 3 (color). Numerical simulation showing normalized po-
tential � ¼ ec =Ti and relative density ni=n0 during the for-
mation and propagation of a shock under the conditions
mentioned before. We have Te=Ti ¼ 25, �ci=�pi ¼ 1

2 and

�ni=n0 � 0:24, where �ni is the actual detected density pertur-
bation at the time where the shock is fully formed. The back-
ground density n0 is normalized to unity. Lower frame shows
sample of shock fitting for the ion density.
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function type spatial variation in the B-field aligned direc-
tion. Ions are continuously injected at the boundary at
z ¼ 0 to maintain the energy input. We have Te=Ti ¼ 25,
�ci=�pi ¼ 1

2 and �ni=n0 � 0:24, where �ni refers to the

actual detected density perturbation at the time where the
shock is fully formed, and not to the initial imposed
perturbation. The standard deviation of the parameters is
estimated from fitting the shock profile with a nonlinear
Levenberg-Marquardt method.

In Fig. 4 we show the shock thickness � and the nor-
malized shock velocity U for various combinations of the
parameters Te=Ti, �ci=�pi and �ni=n0. The velocity U is

obtained by following the shock position zs as function of
time. For small or moderate values of �ni=n0 we find a
close to linear relationship between �ni andU. As �ni ! 0
(shown with a dashed line fit) we have U approaching the
appropriate value for �0, apart from small corrections due
to finite Ti ignored in (2). For �ci=�pi ¼ 1

2 we find that an

approximate fivefold increase in �ni=n0 corresponds to
approximately 50% reduction in �. We demonstrated

also that the shock thickness � scales inversely propor-
tional to the width of the striation. We verified that changes
in the initial B-parallel scale length of the initial density
profile do not change the saturated shock thickness � for
any �ni=n0. We studied also a weak magnetic field limit,
with �ci=�pi ¼ 1

4 . Here, finite ion Larmor radius effects

[ignored in deriving (1)] begin to be important, since the
striation is now only �10 ion Larmor radii wide. For this
limit we find that � is almost constant. Even weaker
magnetic fields will require a fully kinetic theoretical
analysis to account for the effects of collisionless ion
gyroviscosity [10].
We here reported arguments for the formation of shocks

in electron striations in magnetized plasmas when �ci <

�pi and Te � Ti. By PIC simulations we demonstrated the

formation and propagation of electrostatic shocks under
these conditions for a wide combination of parameters. The
decreasing shock thickness for increasing amplitudes is
found also for classical shocks as described by Burgers’
equation, but in our case the dissipation mechanism is
leakage from the electron temperature striation of the short
scale lengths generated by the nonlinear wave steepening.
The ideas presented here can have wider applications.
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