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Abstrat

The proess of nuleation is normally desribed using rate equations for the

mean populations of moleular lusters. This approah an be justi�ed for ases

where these mean populations are large. However, it may be unsuitable in the

ase of heterogeneous nuleation on small partiles if the mean populations are

of the order of unity or less. In suh a ase, onsidering the average populations

might be erroneous sine the statistial utuations in the moleular
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populations should be taken into aount. Here a stohasti treatment of

heterogeneous nuleation kinetis is presented that is desribed by a set of

master equations, and a modi�ed expression for the nuleation rate has been

dedued. Furthermore, a numerial method for solving the stohasti system

has been examined, and the results show that the rate of nuleation an di�er

greatly from that obtained with the traditional kinetis.

PACS numbers: 64.60.Qb, 82.20.-w, 82.65.+r, 02.50.-r

1 INTRODUCTION

Transformations of the phase of substanes are very ommon; dramati examples an

be found in the atmosphere, where the ondensation of water vapour, driven below its

dew point, gives rise to the formation of water and ie louds of great variety and

beauty [1℄. Similar proesses on a grander sale are believed to take plae in the

viinity of stars, giving rise to equally beautiful dusty nebulae. Domesti examples

are also familiar, and proesses suh as melting, freezing, boiling or ondensation are

ommon in industry. However, the rate at whih these proesses our is not easy to

predit.

Most of these phase transformations are �rst order, whih is to say that a latent

heat is transferred during the proess, and a surfae tension exists between the two

phases at equilibrium. The transformation usually involves the emergene of

2



assemblages, or lusters, of moleules with harateristis (density, symmetry, et) of

the new phase. However, these lusters are not neessarily all thermodynamially

more stable than the original phase. Small lusters, with high proportions of

`surfae', tend to be unstable. For moderate degrees of metastability of the original

phase, there exists a `bottlenek' in the proess, orresponding to the need to form a

so-alled ritial moleular luster. One one has been formed, further growth is

thermodynamially favourable. This is the proess of nuleation, driven

fundamentally by thermal utuations. However, for greater degrees of metastability

of the original phase, the phase transformation an beome deterministi, with no

thermodynami bottlenek. The proess then beomes spinodal deomposition [2℄.

Most researh into nuleation is onerned with the homogeneous proess, where

the metastability of the original phase is overome without the presene of speial

nuleation sites in the system. The ritial lusters form in the absene of foreign

bodies and ontainer surfaes. However this is not the proess responsible for most of

the familiar phase transformations desribed earlier. The atmosphere is not entirely

free of suspended matter, and loud formation, for example, takes plae by a proess

of so-alled heterogeneous nuleation. The water lusters, and ultimately the loud

droplets, form on the surfaes of suspended partiles alled loud ondensation nulei

(CCN), sine it is far easier thermodynamially to do this than to form a ritial

luster homogeneously [3℄-[6℄. Heterogeneous nuleation has been previously

investigated via free energy alulation approah [7, 8℄.
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Cloud ondensation nulei are solid or liquid aerosols, often only a fration of a

mirometre in diameter. Now, the metastability of a vapour is measured in terms of

its supersaturation S, de�ned as the ratio of the vapour pressure to the saturated

vapour pressure, and the ritial supersaturation required to drive nuleation at a

given rate is a measure of the ease with whih ritial lusters an be formed. While

a value of S of order 10 might be neessary in some irumstanes to drive

homogeneous nuleation, only S � 0:01 is suÆient to drive the heterogeneous

proess if CCN surfaes are present [9℄. In the atmosphere, supersaturations are

usually limited to these values, so heterogeneous nuleation is the dominant proess.

It is generally onsidered that the kinetis of nuleation were orretly desribed

by Beker and D�oring [10℄ almost 70 years ago. This solution applies to the formation

of lusters of a single moleular speies, by a proess of single moleule attahment

and loss. Usually, the slightly unrealisti steady state situation is assumed, where the

supersaturation of the original phase is held onstant in spite of the onsumption of

material in the formation of new phase. Nevertheless, this is a reasonable

approximation when the rate of onsumption is low, and so the proesses of

homogeneous and heterogeneous nuleation are onsidered to be well represented by

the formula for the nuleation rate:

J =

�

1

n

1

1 +

P

i

max

i=2

Q

i

j=2

(

j

=�

j

)

; (1)

where �

i

is the rate at whih monomers attah to luster of size i, 

i

is the rate at

whih they detah from the same luster and i

max

is the maximum luster size
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allowed in the system. The growth rates �

i

are proportional to the monomer

population n

1

, sine they represent monomeri attahment.

The Beker-D�oring expression, Equation (1),is obtained by solving a basi set of

rate equations desribing the di�erene between �

i

n

i

, the number of growth events

from size i to (i + 1), and 

i+1

, the number of deays from size (i+ 1) to i:

J = �

i

n

i

� 

i+1

n

i+1

; (2)

where n

i

is the steady state population of lusters of size i. These equations are held

to apply for i from unity up to i

max

� 1. The Beker-D�oring solution applies when the

growth ladder is terminated by the assumption that lusters at size i

max

+ 1 do not

deay, hene J = �

i

max

n

i

max

. For many realisti situations, the solution is insensitive

to the hoie of i

max

, as long as it is large enough.

However, the Beker-D�oring approah makes an assumption about the kinetis

whih may not be valid. The rate equations are what we might all lassial in that

the number of growth transitions from size i to (i+ 1), for example, is taken to be the

population of i-lusters n

i

multiplied by a rate oeÆient �

i

proportional to n

1

. If n

1

were a preise onstant, then this assumption would be valid, but in fat all luster

populations in the problem, inluding n

1

, display utuations about a mean value,

sine the proesses of growth and deay our as stohasti events. As we shall show

in the next setion, the growth rate atually requires us to evaluate the mean of the

produt of the populations of monomers and i-lusters, rather than the produt of

the mean.
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The error involved by the neglet of utuations is small when the populations of

lusters are large, by the usual statistial arguments. This is almost always the ase

in pratial ases of homogeneous nuleation: the system is a sample of vapour, say,

in marosopi ontainer, so that the number of monomers present in the system is

huge. However, when the proess under onsideration is heterogeneous nuleation

taking plae on the surfae of a mirosopi partile, the possibility arises that

populations ould be small. An experiment involving vapour ondensation ould be

onduted in a marosopi ontainer, but the atual `reation vessel' would be the

surfae of one of the many partiles suspended inside the ontainer. In experiments

involving heterogeneous nuleation, therefore, it is possible for the Beker-D�oring

kinetis to be inappropriate.

It is this possibility that we investigate in this study. There have been some

attempts at onsidering the disrete nature of the nuleating moleules with the aid

of stohasti arguments. In partiular, Ebeling et al. have examined a master

equation approah in dealing with the nuleation kinetis [11℄. To a limited extent, it

is similar to what we propose in the next setion of this paper, but the theory of

Ebeling et al. gives only a general piture of the kinetis, and is not intended for

treating small systems with tiny mean populations of moleules. The possibility of

low mean populations enountered in preipitation in small droplets has been

onsidered by Manjunath et al., through stohasti simulations involving a series of

the so-alled produt density equations [12℄. Dimer formation taking plae on the
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surfae of tiny dust partiles in low density onditions of interstellar medium and thin

atmospheres has also been previously studied [13℄.

In this paper, we onsider the omplete solution to the heterogeneous nuleation

kinetis of growth and deay of lusters of various sizes, where the possibility of

utuations is properly taken into aount. This requires us to set up and solve

master equations for the probability distributions of luster populations. We onsider

a simple set of rate oeÆients whih allow us to perform the omputational tasks in

an eÆient manner, and ontrast the resulting nuleation rate with the Beker-D�oring

solution. We expose the onditions neessary for large di�erenes to exist between the

`lassial' Beker-D�oring solution and the more appropriate `stohasti' solution to

the master equations.

2 KINETICS OF HETEROGENEOUS

NUCLEATION

2.1 Classial Rate Equations

Consider a host partile surrounded by gas phase moleules (monomers) that

oasionally strike and stik to the partile. One adsorbed, suh a monomer may

move around the partile. It may enounter another monomer and the two may form

a dimer. The growth of the adsorbed moleular luster may progress further due to
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attahments of more monomers. The luster may also deay by loss of monomers,

indued, perhaps, by energy input from the substrate. Clusters need to reah a

ritial size i

�

before they will, on average, be able to grow further. In other words,

for lusters onsisting of i moleules, with i < i

�

, the probability per unit time for a

luster to grow, divided by the probability for it to lose a moleule (deay) is less

than unity. For sizes greater than the ritial size, the ratio of growth to deay

probabilities is greater than unity. Most lusters tend to languish in the sub-ritial

size region, and only oasionally do they manage, by a luky sequene of growth

steps, to reah the ritial size, and thereafter grow.

Traditionally, suh a system is modelled using the rate equations

dn

i

dt

= �

i�1

n

i�1

� 

i

n

i

� �

i

n

i

+ 

i+1

n

i+1

(3)

for i � 2, where n

i

is the mean population of lusters of size i in the system. �

i

is the

rate at whih moleules attah themselves to lusters of size i, and 

i

is the rate at

whih moleules are lost from lusters of size i. The growth rates �

i

are proportional

to the number of monomers n

1

in the system, so that we an write

�

i

= �

0

i

n

1

: (4)

For i = 1 the dynamis are expressed by

dn

1

dt

= j � �n

1

� 2�

1

n

1

+ 2

2

n

2

� (�

2

n

2

� 

3

n

3

)� (�

3

n

3

� 

4

n

4

)� � � � � �

i

max

n

i

max

= j � �n

1

� 2(�

1

n

1

� 

2

n

2

)�

i

max

�1

X

i=2

(�

i

n

i

� 

i+1

n

i+1

)� �

i

max

n

i

max

; (5)
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where j is the soure rate of monomers attahing themselves to the surfae from the

surrounding medium and � is the evaporation rate of monomers from the partile

surfae.

When utuations in populations about mean values are taken into aount, it

would seem reasonable that the rate equations (3) should be replaed by something

like

dhN

i

i

dt

= �

0

i�1

hN

1

N

i�1

i � 

i

hN

i

i � �

0

i

hN

1

N

i

i+ 

i+1

hN

i+1

i; (6)

where the angled brakets represent an averaging over the utuations and the luster

populations are written in upper ase N

i

to remind us that they are utuating

stohasti variables. Equation (5) would similarly be replaed. We shall see in the

next setion how suh equations an be derived from a stohasti treatment of the

populations, and how the averages an be evaluated.

2.2 Stohasti Approah

In the stohasti approah we onsider a probability distribution that desribes the

state of the system in terms of the exat populations of all the allowed luster sizes.

Let the probability that the system ontains N

1

monomers, N

2

dimers, and in general

N

i

i-lusters at time t be W (N

1

; N

2

; : : : ; N

i

; : : : ; N

i

max

; t) � W (fN

i

g; t). In order to

limit the number of elements in this array, we introdue a maximum luster size i

max

.

We also limit eah N

i

to be less than or equal to N

max

i

. The rate of hange of this
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probability is then given by

dW

dt

= jW (N

1

� 1; : : :)� jW (: : :)

+ �(N

1

+ 1)W (N

1

+ 1; : : :)� �N

1

W (: : :)

+ �

0

1

(N

1

+ 2)(N

1

+ 1)W (N

1

+ 2; N

2

� 1; : : :)

� �

0

1

N

1

(N

1

� 1)W (: : :)

+

i

max

�1

X

i=2

�

0

i

(N

1

+ 1)(N

i

+ 1)W (N

1

+ 1; : : : ; N

i

+ 1; N

i+1

� 1; : : :)

+ �

0

i

max

(N

1

+ 1)(N

i

max

+ 1)W (N

1

+ 1; : : : ; N

i

max

+ 1)

�

i

max

X

i=2

�

0

i

N

1

N

i

W (: : :)

+ 

2

(N

2

+ 1)W (N

1

� 2; N

2

+ 1; : : :)

+

i

max

X

i=3



i

(N

i

+ 1)W (N

1

� 1; : : : ; N

i�1

� 1; N

i

+ 1; : : :)

�

i

max

X

i=2



i

N

i

W (: : :): (7)

On the right hand side of the above equation, t has been omitted for simpliity. The

dots represent values of the N

j

that are the same as on the left hand side.

The proesses onsidered are the growth transitions 1 + (i� 1)! i and

1 + i! (i + 1) due to monomer attahment, as well as the deay proesses

i! (i� 1) + 1 and (i+1)! i+ 1 due to monomer detahment from the luster. The

attahment and detahment of dimers, trimers and higher size lusters are negleted.

The �rst two terms (the j terms) desribe the addition of a monomer from the

surroundings, leading to a monomer population hange N

1

! N

1

+ 1. The third and

fourth terms represent loss of a monomer from the partile surfae due to the
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population jump N

1

! N

1

� 1. The rest of the terms are onstruted using similar

arguments for monomeri attahment and detahment to and from dimers, trimers

and in general i-lusters. There is a term for �

i

max

, but no term involving 

i

max

+1

sine lusters at size i

max

may grow, but the population at this size reeives no

additions from the deay of the next larger luster. This ats as the boundary

ondition of the problem.

The lassial limit orresponds to the probability distribution W being unity for

only one set of possible populations of the i-lusters, that is the mean populations.

That is, W (n

1

; n

2

; :::n

i

:::) = 1 and all other elements are zero. Formally, this is

represented, using the Kroneker delta, as

W (N

1

; N

2

; : : :) =

i

max

Y

i=1

Æ

N

i

n

i

: (8)

In the steady state and this lassial limit, solving equation (7) would be

equivalent to solving equations (3), (5) and (1), as shown in the Appendix.

If Equation (7) an be solved by some means, knowledge of W would allows us to

generate probability distributions P

i

(N

i

) for the population of i-lusters:

P

i

(N

i

) =

X

(j 6=i)

N

max

j

X

N

j

=0

W (N

1

; : : : ; N

j

; : : : ; N

i

; : : :): (9)

The P

i

are likely to look like gaussian distributions for large n

i

, or Poisson

distributions for small n

i

. Ideally, the values of all the N

max

j

ought to be in�nity for a

`perfet' evaluation of P

i

(N

i

). However in pratie, as we shall see in Setion 3.3,

satisfatory results may be obtained when the N

max

j

are limited to reasonably small
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values.

It is also possible to alulate joint probabilities, suh as P

li

(N

l

; N

i

), whih is the

probability that we �nd N

l

l-lusters and N

i

i-lusters in the system. These

distributions are given by

P

li

(N

l

; N

i

) =

X

j 6=l;i

N

max

j

X

N

j

=0

W (N

1

; : : : ; N

j

; : : : ; N

l

; : : : ; N

i

; : : :): (10)

If the steady state W are known, it is possible to alulate the nuleation rate.

This is done by summing all the probabilities of growth from any size i to size i+ 1

and subtrat those for deay in the opposite diretion:

J =

X

fN

j

g

(�

0

i

N

1

N

i

W (fN

j

g)� 

i+1

N

i+1

W (fN

j

g)) ; (11)

whih by introduing the notation

hN

i

i =

X

N

i

N

i

P

i

(N

i

) (12)

and

hN

l

N

i

i =

X

N

l

;N

i

N

l

N

i

P

li

(N

l

; N

i

); (13)

allows us to write

J =

8

>

>

>

<

>

>

>

:

�

0

i

hN

1

N

i

i � 

i+1

hN

i+1

i if i � 2

�

0

i

hN

1

(N

i

� 1)i � 

i+1

hN

i+1

i if i = 1:

(14)

Any value of i � 2 in the �rst of the above expressions would give the same result in

the steady state as the nuleation urrent should be independent of luster size. If

one uses i = 1 to ompute the nuleation rate, a slight modi�ation is required as in
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the seond expression in Equation (14), sine having just a single monomer in the

system annot give rise to a nuleation urrent towards the ritial size. In ontrast,

the nuleation rate given in equation (2) aording to the standard rate equation (3),

in the same notation, reads

J

las

= �

0

i

hN

1

ihN

i

i � 

i+1

hN

i+1

i: (15)

One would expet relative utuations in the populations to beome negligible when

the populations are large, so that a mean of a produt beomes the produt of the

means. It is therefore evident from the omparison of Equations (14) and (15) that

the standard rate equations are valid in the large population limit. It is also possible

to visualise how the standard result for the nuleation rate must be modi�ed for

small systems. By writing

�

0

i

hN

1

N

i

i = (1 + �

i

)�

0

i

hN

1

ihN

i

i; (16)

the expression for the rate given in equation (1) an be used to see that, to a good

approximation,

J

small

= J

large

i

�

Y

i=1

(1 + �

i

) ; (17)

where i

�

is the ritial size, where the rate oeÆients for growth and deay are equal

(�

i

= 

i

). We are interested in alulating the modi�ation fator.
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3 CALCULATIONS

3.1 Parameterisation

The master equations (7) are driven by the input parameters j, �, �

0

i

and 

i

. In order

to investigate the problem of heterogeneous nuleation in small systems, we must

arefully hoose the input parameters that are likely to lead to small luster

populations.

Let us introdue a size parameter �, whih may be taken to be proportional to

the surfae area of the host partile. The oeÆients � and 

i

are the deay rates of

monomers (i = 1) and i-mers (i � 2) respetively and hene may be taken as

independent of the system size. The attahment rate j of monomers onto the partile

surfae, however, should inrease linearly with �. It is useful to onsider temporarily

the dynamis in the absene of any dimer prodution, in whih ase the mean

monomer population would be given by a balane between j and �, namely,

hN

1

i ' j=�. If j

0

is the value of j at � = 1 then we an write

j = � j

0

; (18)

so that

hN

1

i '

j

0

�

�: (19)

For onveniene, let us postulate that � = 1 is the system with a nominal mean

monomer population of unity. This imposes the ondition j

0

= �.
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For simpliity, we assume the growth rate �

0

i

to be independent of the luster size

i, i.e., �

0

1

= �

0

2

= � � � = �

0

i

max

. On the other hand, �

0

i

will be inversely proportional to �

sine it measures the likelihood that an adsorbed monomer will enounter an

adsorbed i-mer. As the system gets bigger, this likelihood would diminish.

Furthermore, we may �x �

0

i

suh that at � = 1 the mean growth rate of an i-mer is

unity. Remembering from Eq. (4) that �

i

= �

0

i

hN

1

i, this means that �

0

i

= 1 at � = 1,

and in general

�

0

i

=

1

�

: (20)

The hoie of the parameters 

i

must satisfy the requirement that at the ritial

size i

�

, a luster is as likely to deay as it is likely to grow, i.e., 

i

�

= �

0

i

�

hN

1

i. With

the above stated hoie of �

0

i

and hN

1

i, this means that 

i

�

= 1 at � = 1. Indeed, this

should be true for any value of � as the deay rates are independent of the system

size. The i-dependene of 

i

may be hosen on the grounds that small lusters are

more likely to deay than large lusters. We therefore hoose



i

=

�

i

�

i

�

p

; (21)

where p is some onstant to be deided. Entirely for omputational onveniene, and

without suggesting that the model should represent a real system, we shall hoose

p = 2 and i

�

= 2. This form of 

i

ensures that a luster below the ritial size (i < i

�

)

has a high probability of deay, whereas those above the ritial size (i > i

�

) will �nd

it easier to grow.

The relative values of j

0

(and �) and �

0

i

ontrol the degree to whih the mean
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monomer population is lose to the estimate (19). We shall explore ases where

j

0

� 1 and j

0

= 1 in Setion 3.3.

3.2 Classial Solution

The most onvenient way of deduing the lassial nuleation rate for a given set of

parameters j

0

, �, �, �

i

and 

i

is through the expression (1). However the n

1

appearing in that equation still needs to be known. Although in the large j

0

limit

expression (19) for hN

1

i may provide a reasonable estimate, this is not guaranteed to

be true in general. A better method of �nding n

1

is as follows.

Equation (5) in the steady state may be written, with the help of Eq. (2), as

0 = j

0

� � �n

1

� 2J � (i

max

� 2)J � J

= j

0

� � �n

1

� (i

max

+ 1)J; (22)

where J is given by Eq. (1). Let us assign a funtion

F(n

1

) = j

0

� � �n

1

� (i

max

+ 1)J: (23)

This funtion falls with inreasing n

1

. As an initial approximation, we provide

n

1

= j

0

�=�, whih in all pratial ases is at least a slight overestimation of the atual

value of n

1

. We then iteratively searh for a zero of the funtion F(n

1

) by subtrating

a very small amount (typially � 10

�6

) from the trial value of n

1

and evaluating a

new value of F(n

1

). This proess is ontinued until a solution is found within a very
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small tolerane. The �nal value of n

1

that orresponds to F(n

1

) = 0 an then be

utilised in Eq. (1) to �nd the lassial value of the nuleation rate.

3.3 Solving the Master Equation

Given all the neessary parameters given in Setion 3.1, we are in a position to solve

the master equations (7) whih should ultimately render the stohasti solution to

the system. Solving Eq. (7) analytially does not appear to be a feasible task. We

therefore look for an appropriate numerial tehnique to at as a substitute.

Computationally, we disretise time t, and replae the dt by a very small but

�nite �t in Equation (7). The dW (t) may then be replaed by W (t+�t)�W (t),

thus allowing Eq. (7) to be solved iteratively. As an initial ondition, we set

W (0; 0; 0; : : : ; 0; t = 0) = 1 with all the remaining elements of the array W (fN

i

g) set

to zero, speifying an empty system to start with. The system thereafter evolves in

time until a steady state is reahed.

Equations (7) represent a set of oupled di�erential equations. i

max

is the largest

size of luster that an form on the partile, and needs to be spei�ed expliitly at

the beginning. In priniple, it should be large enough so that the ontribution due to

terms with i

max

+ 1 in the series appearing in Equation (1) is negligible.

Stritly speaking, the multidimensional array W (fN

i

g) onsists of an in�nite

number of elements, but for omputational purpose we may set an upper limit on the

17



maximum number of i-lusters the system an possess at any time. In other words

the array W (fN

i

g) takes the form W

�

0 : N

max

1

; 0 : N

max

2

; : : : ; 0 : N

max

i

max

�

. These values

N

max

1

; N

max

2

; : : : ; N

max

i

max

should be deided by eduated guess suh that all of the i

max

probability distributions in Eq. (9) die down to negligible levels at N

i

= N

max

i

at the

end of the iterations.

Steady state is onsidered to have been reahed when all the elements of

W (fN

i

g) have onverged within a very small tolerane. The nuleation rates J with

di�erent values of i in Equation (14) will normally evolve di�erently with time, but

eventually they will all onverge upon a ommon value. This onvergene of J with

di�erent values of i in fat serves as a `double hek' for ensuring that a steady state

has indeed been ahieved.

In Figure 1 we plot the lassial as well as the stohasti nuleation rates

obtained under di�erent values of i

max

, with �xed values of i

�

= 2, j

0

= � = 1 and

� = 1. As an be seen, the nuleation rate J is not very sensitive to i

max

. The

stohasti J dereases slightly with inreasing i

max

, but the essential message is that

a value of i

max

= 4 may be trusted in order to demonstrate at least the qualitative

behaviour of the system.

An example of the probability distributions P

i

(N

i

), as de�ned in Equation (9)

and alulated one the steady state has been reahed, is shown in Figure 2. P

1

(N

1

)

is the probability distribution for the monomer population, P

2

(N

2

) is the same for

dimmers, and so on.
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Figure 3 shows the stohasti and lassial nuleation rates as a funtion of the

partile size parameter � for j

0

= � = 100. The alulation has been performed with

i

�

= 2 and i

max

= 4. Figure 4 shows the mean monomer population for the same

system as predited by the two models. There is a good agreement between the two

models for the monomer population in this limit of j

0

� 1. The nuleation rates in

Fig. 3 aording to the two models, however, start diverging as � falls below 0.1. It is

interesting to note that the monomer population between � = 0:1 and � = 1 is below

unity and yet the stohasti nuleation rate does not di�er onsiderably from its

lassial ounterpart in this range, and for these parameters.

In Figure 5 the nuleation rate is plotted again as a funtion of �, but this time

with j

0

= � = 1, the rest of the parameters being the same as in Fig. 3. The mean

monomer population for the same system is plotted in Figure 6, and now we see that

the stohasti hN

1

i does di�er from lassial hN

1

i one � goes below unity.

Approximately below the size � = 1, where the mean monomer population is below

unity, visible di�erene between the lassial and stohasti nuleation rates is again

evident in Figure 5. The linear dependene of J with respet to � exhibited in the

lassial theory is lost when one deals with very small partile sizes. Note that the

stohasti model gives a smaller nuleation rate, but a higher mean population of

monomers than the lassial predition, sine a higher nuleation rate would leave

fewer monomers on the surfae.

The ratios J

lassial

=J

stohasti

derived from both ases, j

0

= � = 100 and
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j

0

= � = 1, have been plotted in Figure 7. This is simply the fator by whih the

lassial Beker-D�oring kinetis overestimates the nuleation rate as ompared with

the stohasti model presented here. The overestimation grows as we look at ever

smaller sizes (�) of the host partile. Also, the ratio is larger for the j

0

= � = 1

alulations, ompared with the j

0

= � = 100 ase. This is due partly to the fat that

a large value of j

0

produes a mean monomer population loser to the lassial

predition as disussed in Setion 3.1.

The lassial treatment requires there to be a large population of the nuleating

speies so as to be able to use a mean value of the populations in treating the

kinetis. However, when the mean monomer population is below unity, there are

instanes when there are no monomers present on the surfae and only by a luky

hane are there more than one monomers present. Sine the lassial kinetis ignores

this disrete nature of the moleular speies, it assumes a higher reation rate

between the moleules, hene yielding an overestimated nuleation rate.

4 CONCLUSIONS

We have studied the problem of heterogeneous nuleation under onditions where the

mean populations of the nuleating lusters may be of the order of unity. The

traditional rate equation approah, whih treats the kinetis in terms of the mean

luster populations, is likely to fail in suh limit. To investigate this, we have
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proposed a new master equation approah that takes into aount the stohasti

utuations in luster populations, and replaes the lassial rate equations.

A method for solving the master equation numerially has been explored. The

results of the model alulations performed here indiate a large di�erene in the

nuleation rates as predited by the stohasti and lassial treatments as the

nuleation site beomes very small. However, if the system is large, the stohasti

treatment reprodues the lassial Beker-D�oring kinetis.

For simpliity, only monomer attahment and detahment to the nuleating

luster has been allowed in the stohasti model here. The master equation an

nevertheless be extended easily to inlude the loss and gain of dimers, trimers et.,

solving whih would learly require a muh greater deal of omputational power.
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APPENDIX

It is possible to show that the master equations (7) do indeed redue to the rate

equations (3) and (5) in the lassial limit of relatively large populations. To do this,
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let us de�ne an operator

b

O suh that

b

O � f =

1

X

fN

i

g=0

N

`

� f; (24)

i.e., we multiply the given term f by N

l

(where l = 1; : : : ; i

max

) and sum the result

over all the fN

i

g. Let us perform this operation on both sides of Eq. (7). This makes

the left hand side read as

1

X

fN

i

g=0

N

`

dW (fN

i

g)

dt

=

dhN

`

i

dt

; (25)

whih is equivalent to the L.H.S. of Equations (3) and (5). Now onsider the

onsequene of this operation on the right hand side of Eq. (7). On the R.H.S., one

needs to treat separately the ases of ` = 1 and ` > 1 sine there are di�erent rate

equations for the two ases of N

1

and N

`

(` > 1) in the lassial piture. Let us

onsider terms proportional to the parameters j, �, �

0

i

and 

i

one by one and try to

ompare them with those found in the rate equations (3) and (5).

The j terms:

` = 1

Operating the �rst term in Eq. (7) by

b

O along with ` = 1 will render

1

X

fN

i

g=0

jN

1

W (N

1

� 1; : : :):

In order to bring the probability W in the same form as on the left hand side, that is

W (N

1

; N

2

; : : : ; N

i

max

), we an make the substitution N

1

! N

1

+ 1, whih is what
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happens to the monomer population due to the j term. The above notation will then

turn into

1

X

fN

i

g=0

j(N

1

+ 1)W (N

1

; : : :) = jhN

1

+ 1i: (26)

The sum over this new N

1

label should run from �1 to 1, but learly the unphysial

�rst term in the series vanishes, so that the lower limit is indeed zero.

Operating upon the seond term in Eq. (7) with

b

O will give

�

1

X

fN

i

g=0

jN

1

W (: : :) = �jhN

1

i: (27)

In the lassial limit, the upper ase N

1

together with angled brakets is replaed

by n

1

, so from Equations (26) and (27), the net result of applying

b

O on both the j

terms in Eq. (7) is

jn

1

+ j � jn

1

= j: (28)

This is preisely what we have as the `j term' in the rate equation (5), whih was

written down expliitly for the monomeri (` = 1) population.

` > 1

If ` is not equal to 1, then the operation due to

b

O will make the �rst term in Eq.

(7) read

1

X

fN

i

g=0

jN

`

W (N

1

� 1; : : :);

where ` 6= 1. This time the substitution N

1

! N

1

+ 1 will lead to

1

X

fN

i

g=0

jN

`

W (N

1

; : : :) = jhN

`

i: (29)
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The seond term of the master equation under the operation of

b

O will be similar to

the expression (27):

�

1

X

fN

i

g=0

jN

`

W (: : :) = �jhN

`

i: (30)

Hene the sum of Equations (29) and (30) will be zero, and indeed, there is no j term

in the rate equations (3).

The � terms:

` = 1

If we apply the operator

b

O to the third term of the master equation (7), we have

1

X

fN

i

g=0

�N

1

(N

1

+ 1)W (N

1

+ 1; : : :):

This time we make the substitution N

1

! N

1

� 1 so that the above expression is

onverted into

1

X

fN

i

g=0

�(N

1

� 1)N

1

W (N

1

; : : :) = �h(N

1

� 1)N

1

i: (31)

The lower limit for the sum over the shifted variable N

1

should be +1, but we an

extend this to zero without hanging the result of the summation.

Performing the operation

b

O on the fourth term of the master equation will give us

�

1

X

fN

i

g=0

�N

1

N

1

W (: : :) = ��hN

2

1

i: (32)

One again, to see the orrespondene with the lassial model, we replae the angled

brakets and the upper ase N

1

with the lower ase n

1

, so we are left with the net
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result

�(n

2

1

� n

1

)� �n

2

1

= ��n

1

: (33)

This is the � term found in the monomeri rate equation (5).

` > 1

The third term of Eq. (7) under the inuene of

b

O will this time beome

1

X

fN

i

g=0

�N

`

(N

1

+ 1)W (N

1

+ 1; : : :);

and the substitution N

1

! N

1

� 1 will make it

1

X

fN

i

g=0

�N

`

N

1

W (N

1

; : : :) = �hN

`

N

1

i: (34)

The operation due to

b

O on the fourth term of Eq. (7) will give us ��hN

`

N

1

i. Hene

the lambda term will vanish for the ` > 1 ase, and is absent in the rate equation (3)

also.

The �

0

i

terms:

` = 1

If we operate on the �fth term in the master equation (7) with

b

O, using ` = 1, we

get

1

X

fN

i

g=0

�

0

1

N

1

(N

1

+ 2)(N

1

+ 1)W (N

1

+ 2; N

2

� 1; : : :);

whih with substitutions N

1

! N

1

� 2 and N

2

! N

2

+ 1 beomes

1

X

fN

i

g=0

�

0

1

(N

1

� 2)(N

1

� 1)N

1

W (N

1

; : : :) = �

1

h(N

1

� 2)(N

1

� 1)i: (35)
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where we have used the fat that �

i

= �

0

i

N

1

. The sixth term an be operated on

without having to do any re-labelling of N :

�

1

X

fN

i

g=0

�

0

1

N

1

N

1

(N

1

� 1)W (: : :) = ��

1

hN

1

(N

1

� 1)i: (36)

The seventh term will however require re-labelling in order to bring the W in the

desired form. We �rst operate on it with

b

O to get

1

X

fN

i

g=0

i

max

�1

X

i=2

�

0

i

N

1

(N

1

+ 1)(N

i

+ 1)W (N

1

+ 1; : : : ; N

i

+ 1; N

i+1

� 1; : : :);

and then use the substitutions N

1

! N

1

� 1, N

i

! N

i

� 1 and N

i+1

! N

i+1

+ 1 in

order to obtain

1

X

fN

i

g=0

i

max

�1

X

i=2

�

0

i

(N

1

� 1)N

1

N

i

W (N

1

; : : : ; N

i

; N

i+1

; : : :) =

i

max

�1

X

i=2

�

i

h(N

1

� 1)N

i

i: (37)

With some thought, it is possible to realise that result (37) will hold true for any

value of i in the

P

i

max

�1

i=2

series. A similar proedure on the eighth term of Eq. (7) will

give us

�

i

max

h(N

1

� 1)N

i

max

i; (38)

whih essentially ompletes the series in Equation (37) from i = 2 to i

max

. Finally, we

operate on the ninth term with

b

O and obtain

�

1

X

fN

i

g=0

i

max

X

i=2

�

0

i

N

1

N

1

N

i

W (: : :) = �

i

max

X

i=2

�

i

hN

1

N

i

i; (39)

whih again holds no matter what value of i is hosen in the

P

i

max

i=2

series.

Hene the sum of all the �

0

i

terms in Equations (35), (36), (37), (38) and (39) will
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be

i

max

X

i=2

�

i

h(N

1

� 1)N

i

i �

i

max

X

i=2

�

i

hN

1

N

i

i+ �

1

h

h(N

1

� 2)(N

1

� 1)i � h(N

1

� 1)N

1

i

i

: (40)

If we now replae the upper ase N with its lower ase ounterpart, disarding the

angled brakets to reet the lassial limit, expression (40) is easily redued to

�

i

max

X

i=2

�

i

n

i

� 2�

1

(n

1

� 1): (41)

It an be seen that these are the � terms in the rate equation (5) provided that

n

1

� 1 � n

1

in the above expression. This is a fair approximation in the lassial limit

where the monomeri population is high.

` > 1

Additional are is required when one deals with the ase of ` 6= 1 in the �

0

i

terms.

This is due to the series

P

i

max

i=2

involved and unlike the ` = 1 ase, ontributions due

to di�erent values of i need to be examined expliitly.

Consider the �fth term in Eq. (7) �rst. With the operator

b

O applied, it will read

1

X

fN

i

g=0

�

0

1

N

`

(N

1

+ 2)(N

1

+ 1)W (N

1

+ 2; N

2

� 1; : : :);

and the substitutions N

1

! N

1

� 2 and N

2

! N

2

+ 1 will make it

1

X

fN

i

g=0

�

0

1

N

`

N

1

(N

1

� 1)W (: : :) = �

1

h(N

1

� 1)N

`

i if ` � 3 (42)

and

1

X

fN

i

g=0

�

0

1

N

1

(N

1

� 1)(N

2

+ 1)W (: : :) = �

1

h(N

1

� 1)(N

2

+ 1)i if ` = 2: (43)
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The sixth term in Eq. (7) will not require any re-labelling of N after being

operated on by

b

O and regardless of the value of ` it will beome

�

1

X

fN

i

g=0

�

0

1

N

`

N

1

(N

1

� 1)W (: : :) = ��

1

h(N

1

� 1)N

`

i: (44)

Hene for ` � 3 the sum of the positive and negative �

1

terms, given in expression

(42) and (44), is zero. The rate equation (3) written down for i � 3 will surely have

no �

1

terms. For the speial ase of ` = 2, the sum of expressions (43) and (44) will

leave �

1

(n

1

� 1) in the lassial language. Considering the rate equation (3) for i = 2

ase, one would �nd the term �

1

n

1

, whih is approximately equal to the stohasti

result �

1

(n

1

� 1), provided that n

1

� 1. This is a valid assumption in the lassial

limit, and so the �

0

1

terms in the stohasti master equation are reduible to those in

the lassial rate equations when the mean populations are large.

Let us now onsider the seventh term in Eq. (7). With operator

b

O ating on it, it

would read

1

X

fN

i

g=0

i

max

�1

X

i=2

�

0

i

N

`

(N

1

+ 1)(N

i

+ 1)W (N

1

+ 1; : : : ; N

i

+ 1; N

i+1

� 1; : : :):

Consider the expansion of the seond summation here:

1

X

fN

i

g=0

�

0

2

N

`

(N

1

+ 1)(N

2

+ 1)W (N

1

+ 1; N

2

+ 1; N

3

� 1; : : :)

+

1

X

fN

i

g=0

�

0

3

N

`

(N

1

+ 1)(N

3

+ 1)W (N

1

+ 1; : : : ; N

3

+ 1; N

4

� 1; : : :)

+

1

X

fN

i

g=0

�

0

4

N

`

(N

1

+ 1)(N

4

+ 1)W (N

1

+ 1; : : : ; N

4

+ 1; N

5

� 1; : : :) + � � �
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With appropriate re-labelling as done before, and remembering that �

i

= �

0

i

N

1

, it is

possible to show that the this term redues to

�

`�1

hN

`�1

(N

`

+ 1)i+ �

`

hN

`

(N

`

� 1)i+

i

max

X

i=2

i 6= `�1; `

�

i

hN

i

N

`

i: (45)

The operator

b

O will redue the eighth term of Eq. (7) into

1

X

fN

i

g=0

�

0

i

max

N

`

(N

1

+ 1)(N

i

max

+ 1)W (N

1

+ 1; : : : ; N

i

max

+ 1);

and with the re-labelling N

1

! N

1

� 1 and N

i

max

! N

i

max

� 1 will give us

1

X

fN

i

g=0

�

0

i

max

N

`

N

1

N

i

max

W (: : :) = �

i

max

hN

i

max

N

`

i if ` = 2; : : : ; i

max

� 1

1

X

fN

i

g=0

�

0

i

max

(N

i

max

� 1)N

1

N

i

max

W (: : :) = �

i

max

hN

i

max

(N

i

max

� 1)i if ` = i

max

:

(46)

A similar argument applies to the ninth term of Eq. (7). The operator

b

O will

redue this term to

�

1

X

fN

i

g=0

i

max

X

i=2

�

0

i

N

`

N

1

N

i

W (: : :) = �

i

max

X

i=2

�

i

hN

i

N

`

i (47)

regardless of the value of `. Hene summing the seventh, eighth and ninth terms of

the master equation, given here as expressions (45), (46) and (47), and replaing the

upper ase N with the lower ase n in the lassial piture will give us �

`�1

n

`�1

��

`

n

`

,

where ` = 2; : : : ; i

max

. These are the �

i

terms in the lassial rate equation (3).

The 

i

terms:

` = 1
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The e�et of the operator

b

O, with ` = 1, on the tenth term in the master

equation (7) will be

1

X

fN

i

g=0



2

N

1

(N

2

+ 1)W (N

1

� 2; N

2

+ 1; : : :);

and the re-labelling N

1

! N

1

+ 2 and N

2

! N

2

� 1 will give us

1

X

fN

i

g=0



2

(N

1

+ 2)N

2

W (: : :) = 

2

h(N

1

+ 2)N

2

i: (48)

The eleventh term of Equation (7), under the operation due to

b

O will beome

1

X

fN

i

g=0

i

max

X

i=3



i

N

1

(N

i

+ 1)W (N

1

� 1; : : : ; N

i�1

� 1; N

i

+ 1; : : :);

whih with the re-labelling N

1

! N

1

+ 1, N

i�1

! N

i�1

+ 1, N

i

! N

i

� 1 beomes

1

X

fN

i

g=0

i

max

X

i=3



i

(N

1

+ 1)N

i

W (: : :) =

i

max

X

i=3



i

h(N

1

+ 1)N

i

i: (49)

The last term in Equation (7) is more straight forward and does not require any

re-labelling, so the operator

b

O will make it

�

1

X

fN

i

g=0

i

max

X

i=2



i

N

1

N

i

W (: : :) = �

i

max

X

i=2



i

hN

1

N

i

i: (50)

Replaing the angled brakets and the upper ase N with the lower ase n in the

lassial limit, the sum of all the 

i

terms expressed in (48), (49) and (50) will be

2 

2

n

2

+

i

max

X

i=3



i

n

i

= 2 

2

n

2

+

i

max

�1

X

i=2



i+1

n

i+1

: (51)

These are preisely the 

i

terms appearing in the monomeri rate equation (5).
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` > 1

If we operate on the tenth term of Equation (7) with

b

O, we get

1

X

fN

i

g=0



2

N

`

(N

2

+ 1)W (N

1

� 2; N

2

+ 1; : : :);

and with the re-labelling N

1

! N

1

+ 2 and N

2

! N

2

� 1 it beomes

1

X

fN

i

g=0



2

N

`

N

2

W (: : :) = 

2

hN

`

N

2

i: (52)

If operated upon by

b

O, the eleventh term of Equation (7) will read

1

X

fN

i

g=0

i

max

X

i=3



i

N

`

(N

i

+ 1)W (N

1

� 1; : : : ; N

i�1

� 1; N

i

+ 1; : : :):

With suitable substitutions, it an be shown that this expression is equivalent to



`

hN

`

(N

`

� 1) + 

`+1

hN

`+1

(N

`

+ 1)i+

i

max

X

i=3

i 6= `;`+1



i

hN

`

N

i

i: (53)

Finally, the last term in Equation (7) under the operation due to

b

O will appear as

�

1

X

fN

i

g=0

i

max

X

i=2



i

N

`

N

i

W (: : :) = �

i

max

X

i=2



i

hN

`

N

i

i; (54)

where ` = 2; : : : ; i

max

. Hene the sum of the all the 

i

terms given in (52), (53) and

(54) will be



`

hN

`

(N

`

� 1)i+ 

`+1

hN

`+1

(N

`

+ 1)i � 

`

hN

`

N

`

i � 

`+1

hN

`+1

N

`

i;

whih under the lassial limit an be simpli�ed as 

`+1

n

`+1

� 

`

n

`

. These are the 

i

terms found in the lassial rate equation (3), exept that here the subsript ` is used

for labelling purpose.
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We therefore onlude that the set of stohasti master equations (7) are

reduible to the set of lassial rate equations given in (3) and (5) when the mean

populations are large. Furthermore, it is possible to justify the stohasti expression

for the nuleation rate, given in Equation (14).
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Figure 1 Nuleation rate as a funtion of i

max

with i

�

= 2, j

0

= � = 1 and � = 1.

It is reasonably safe to hoose i

max

= 4, sine the results obtained with a

higher i

max

= 6, for instane, are approximately the same.

Figure 2 A typial example of probability distributions P

i

(N

i

). Only values

plotted at integer N are physial; the urves have been �tted as a guide to

the eye. In this example, N

max

1

= 16, N

max

2

= 12 et. were suÆient to give

satisfatorily smooth probability distributions for the mean populations.

Figure 3 Nuleation rate as a funtion of the size parameter � for the j

0

= � = 100

model. The predition of rate equation approah is shown with ross signs,

and the squares are the results of the stohasti model presented here.

Figure 4 Stohasti and lassial mean monomer population, hN

1

i, as a funtion

of � for the j

0

= � = 100 model. Both models predit essentially the same

mean populations for this hoie of parameters.

Figure 5 Nuleation rate as a funtion of � for the j

0

= � = 1 model. Di�erene

between the stohasti and lassial models emerges below � = 1.

Figure 6 Stohasti and lassial mean monomer population, hN

1

i, as a funtion

of � for the j

0

= � = 1 ase. Unlike the j

0

= � = 100 ase, some di�erene

an be seen here between the mean populations aording to the two

models.

Figure 7 The ratio of lassial versus stohasti nuleation rate alulated as a
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funtion of � for the j

0

= � = 100 and j

0

= � = 1 models.
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