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Abstract. In this paper we discuss the self-trapping of a carrier or exciton in an insulator. 
The qualitative differences between small self-trapped molecular polarons and dielectric 
polarons are stressed. We point out that, for the formation of a molecular polaron 3r self- 
trapped exciton, a potential barrier must be penetrated or surmounted by the configuration 
coordinate, leading to a delay in the self-trapping process. This does not exist for dielectric 
polarons. The observable consequence of the delay time before self-trapping is discussed, 
and applications are made to alkali halides and to SOz. 

1. Introduction 

Two kinds of polaron are known in the literature : the ‘dielectric’ polaron, which occurs 
for electrons or holes in a polar lattice, and the ‘molecular’ polaron in which self- 
trapping is caused by short-range interactions. It is the purpose of this paper to  show 
how the two types differ both in their rates of formation when a free carrier is excited 
and in their observed behaviour. 

The properties of the dielectric polaron result from the Coulomb interaction of the 
carrier and the polar lattice. As argued by Landau (1933 ; see also Mott and Gurney 
1940), the electron or hole is thought to create for itself a potential hole of the form 
for large Y, 

(1) 
where I C ~  and IC, are the static and optic dielectric constants. Since this is a Coulomb 
field, self-trapping is always possible, and the orbital of the self-trapped electron is of 
order 

- 1  - e 2 / K e f f r ,  IC,;; = IC, - K i l ,  

h 2 x e f f I m e f f e 2 .  (2) 
Equation (1) is only valid for values of Y greater than this and the polaron is only called 
‘small’ if (2) is comparable with the lattice constant. If it is greater, only weak trapping 
is expected and, as meff decreases, there should be a continuous transition to ‘large’ 
polaron behaviour, with no activation energy for motion. Though we know of no 
detailed treatment of the rate a t  which such small polarons form round free carriers, it 
appears likely that, for a carrier injected into a solid, equilibrium will be established within 
the time of a very few lattice vibrations. 

The main point of this paper is to  stress some of the differences for the other kind 
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of self-trapped carrier, the molecular polaron, or  for self-trapped excitons. Typical of 
these are the VK centres in alkali halides ; here a hole in the valence band is self-trapped 
because a halogen atom forms a bond with a neighbouring halogen ion, the two attract- 
ing each other so that the distance between them falls well below that in the undistorted 
lattice. A similar phenomenon occurs in solid and liquid argon (Miller et a1 1968), and, 
as we shall argue, for holes in SiO,. Similar mechanisms can give self-trapping for 
excitons too. The ‘molecular’ polaron is only formed for fairly large effective mass, and 
if this is not large enough nothing happens; there is nothing analogous to the dielectric 
‘large polaron’. 

The reason for this critical change of behaviour has been pointed out by Toyozawa 
(1962, 1963) and Emin (1972, 1973). Our version of the argument is illustrated in figure 1. 

E l  

Figure 1. Self-trapping mechanism for a hole. (i) is the elastic energy, (iij the electronic and 
(iii) the total. In case (a) no polaron is formed, in (b) the trapping energy is W ,  (cj is for a 
hole trapped by a defect. 

For a V, centre q denotes the change in the distance between the two halogens concerned, 
and curve (i) the elastic energy. The potential well formed for the carrier is not ofcoulomb 
type (l), and therefore only for a finite value qo of q will it be able to  trap an electron. 
This is because in three dimensions a potential well of radius a and depth V can only 
trap a carrier if 

2mT/a2/h2 > an2. (3) 

When it does, the energy of the electron will be lowered as in curve (ii). The total energy 
(iii) will have a minimum, but only if this lies below zero can self-trapping occur. This 
case is shown in figure l(b) and the binding energy of the polaron is W 

Perhaps the most striking evidence for self-trapping when the polaron binding 
energy W is positive but not when W is negative comes from the study of radiation emitted 
by excitons in AgBr,Cl, - x .  Here it is a question of self-trapping of excitons rather than 
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free carriers, which we shall treat below, but the principles are the same. In this system 
there is at  a certain value of x a sudden change from narrow lines due to untrapped 
excitons to a much broader line displaced to longer wavelengths due to  trapped excitons 
(Kanzaki and Sakuraki 1970). 

Several other points are worth making here. First of all, it is only in two or three 
dimensions that short-range forces like chemical bonding give rise to the critical be- 
haviour shown in figures l(a) and (b) for a molecular polaron. This has been discussed 
by Sumi and Toyozawa (1973) and by Emin and Holstein (1976). In Holstein's (1959) 
important paper on hopping polarons, using a molecular model, he took a one-dimen- 
sional array of molecules, and since, in one dimension, any potential well will trap a 
carrier, our qo must be zero (figure l(a)) and the present considerations do  not apply. 
Secondly, it is possible for both types of polaron to coexist in the same system if the 
coupling parameters are suitable (see, e.g., Emin 1972 or Emin and Holstein 1976). This 
is important in some transport properties (e.g., Sumi 1973), where most carriers may be 
present as the slowly diffusing small molecular polarons, yet transport may be dominated 
by the faster-moving large dielectric polarons. We shall treat the interaction between 
the two kinds of polaron later in this paper. Thirdly, in simple treatments of small 
dielectric polarons, the hopping energy for diffusive motion, W,, is related to  the polaron 
binding energy, W ,  and approximately W, = This result has only limited validity 
in any case. But it can be seen from figure 1 that for molecular polarons there is no relation 
at all between W and the hopping energy (W, = H/2) ,  quite apart from any limitations 
of the usual simple treatments. 

The new point that we want to bring out in this paper should be clear from figure 1. 
If the electron is in thermal equilibrium at the point 0 in figure l(b), and self-trapping is 
to  occur. the system must first pass through a potential barrier+, of height marked w. At 
high temperatures the probability of this happening will be Cexp ( -  w / k T )  per unit 
time. At  low temperatures it can tunnel through the  barrier and the probability will be 
C exp( - w/$ho). Here o is the frequency of the vibration of the quantity denoted by q 
in figure 1 ; C is probably of order 10' s- We shall discuss the observable consequences 
of the barrier w. 

Emin and Holstein (1976) discuss the case when dielectric and molecular polaron 
formation are possible together (cf 9 3) ,  as they must be for holes in alkali halides. We 
think, in terms of the model of figure 1, that a dielectric palaron (large or  small) will 
be formed round a hole at 0 in a few multiples of s, and that this will have the 
effect of increasing the effective mass of the hole ( m  in equation (3)). This will clearly 
decrease qo in figure 1 and so make self-trapping easier. The effect should not be so 
marked when the hole is part of an exciton, since the electron will screen the hole from the 
surrounding dielectric. 

2. Consequences of a barrier to self-trapping 

When a molecular polaron is formed, its effects are observed spectroscopically and in 
transport phenomena. Optical spectroscopy is a particularly useful tool, for self-trapping 
leads to broad lines with a large Stokes shift, whereas transitions involving only weakly- 
localised states are often sharp. Thus there may be sharp absorption to  a diffuse state 

t The existence of a potential barrier was pointed out by Toyozawa (1962), but its consequences were not 
analysed 
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followed by a broad emission band from a self-trapped state. The transport properties 
of a small polaron show a characteristic thermally-activated form which can be identified 
more closely by measurements of the thermopower and Hall effect. 

We are concerned with a barrier to self-trapping, and hence with a delay before the 
characteristic features of a molecular polaron appear. The delay time will usually be 
temperature-dependent, but tending, as we have seen, to a constant value at low 7; and 
there may be a period for which (in ionic materials) both small molecular and large 
dielectric polaron behaviour can be seen together. In this section we discuss the experi- 
mental evidence from transport measurements in SiO, and from optical work on alkali 
halides. 

2.1. Self-trapped holes in SiO, 

Evidence of delay in the formation of self-trapped carriers can come either from the 
mobility of injected holes in, say, films of solid argon, or from the behaviour of excitons 
formed from an electron bound to  a hole, as in NaCl. For free holes the only evidence 
known to us comes from the work of Hughes (1973, 1975, 1977) on thermally-grown 
SiO,. This substance is amorphous ; the valence band, formed from lone-pair oxygen 
2p-orbitals, is calculated to  be - 3 eV wide. The hole mobility is found to  be activated, 
the electron mobility not. I t  seems unlikely that discrete traps are present for holes but 
not electrons and the rather large activation energy found, 0.37 eV, is in all probability 
due to self-trapping. One possibility is (see Mott 1977) that a ‘hole’ on one oxygen ion 
forms a bond with another neighbouring oxygen ion, and as in the V, centre the two 
pull together. 

Hughes finds also an initial mobility with an activation energy of 0.1 3 eV (his ‘prompt’ 
mobility), settling down to a final value of 0.37 eV after a time of order - 10- ’ s. We 
suggest that this is the time needed for self-trapping, and that, due to the high Debye 
temperature, this should be (1/C) exp ( +  w/@m);  with hco - 0.1 eV, C - lo1, s-’, this 
gives w = 0.4 eV, which seems reasonable. We have however to  explain the smaller 
value (0.1 3 eV) for the ‘prompt’ mobility. This could well be the energy for excitation to 
a mobility edge; for holes in amorphous As,Te, this, according to Nagels et a1 (1974; 
see also Mott et a1 1975), is 0.1 eV, so 0.13 eV is reasonable for SiO,. But we have to  ask 
whether, if states at  the valence band edge are localised by disorder in the Anderson 
sense, a delay time for self-trapping is still to be expected. If the states are strongly 
localised, within a distance comparable to the lattice parameter, a delay time is not to 
be expected and the distortion should occur within the time of a few lattice vibrations. 
But localised states leading to a mobility edge at only 0.13 eV from the valence band edge 
should have a spatial extent of - 10 atomic spacings, and under these conditions the 
activation energy and hence the delay in self-trapping will be only slightly reduced. A 
simple way of showing this is to represent the localised state by a sphere of radius b at 
which I) vanishes, and the well produced by distortion by a potential - Vextending 
over a radius a, with bla s 1. For small I! the change in the energy is Va3/b3, but when 
V becomes deep enough for a bound state to occur for b = CO, the change in the energy 
is little affected by b. Thus, except that the discontinuity in the slope of E versus q is no 
longer there, the essential features of figure 1 are retained. 

2.2. Self-trapped excitons 

We turn now to excitons. In alkali halides a direct gap exciton is expected (Kunz and 
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Lipari 1971). For these materials the concept of exciton self-trapping, and a finite life- 
time before trapping, goes back quite a long way (see for instance Sumi and Toyozawa 
1972, Sakoda and Towozawa 1973), and it is generally supposed that the mechanism is 
the same as for holes. However, there are two main differences : the mechanisms which 
determine the free-particle bandwidths are different for excitons? and for holes, and the 
coupling to the lattice is modified by the electron component of the exciton. Thus the 
value of qo in figure 1 will be different and may also be larger than for the free hole. 

We think, then, that for an exciton we may draw the ground and excited states in 
various ways, shown in figure 2. In (a) B lies above A. The exciton absorption line will 

9 

9 

Figure 2. Self-trapping mechanism for an exciton. In case (a) no self-trapping occurs, in case 
(b) it occurs after a time delay; case (c) is for a trapped exciton. 

be sharp, and a sharp line with the same frequency should be reradiated. In figure 2(b), 
B lies below A. Self-trapping is then possible with the time delay given as for holes ; after 
self-trapping, we have either a broad luminescence band or multiphonon emission 
where at low temperature the transition probability will be (Englman and Jortner 1970) 

y N 1 for strong interaction 
y - 2 for weak interaction. 

C exp ( - yE/ho) (4) 

Here E is the energy radiated, C is of order 10' s- ' and y depends weakly on the distance 
OD. As the temperature increases towards the Debye temperature, (4) should be multi- 
plied by [exp ( - hw/kT) + l ] - E i h w ;  and at higher temperatures recombination occurs 

t For a discussion of the transport mechanism of excitons, see for instance Haken and Reineker (1972). 
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by exciting over the crossing point X, as first suggested by one of us (Mott 1938) ; the 
recombination coefficient then behaves as 

C exp ( - W/kT) .  ( 5 )  
In this non-radiative multiphonon transition, the energy released may be dissipated by 
interaction with other phonons or by causing radiation damage. Whether the system 
shows luminescence or decays non-radiatively depends largely on the form of the curves 
in figure 2(b) or (c). Dexter et a1 (1955) first suggested that ifX lies below A (in figure 2(c)), 
then the system would swing directly to X and recombine in a time - l /o .  But this is 
only true in the low Tregime when the system tunnels from A to P; if self-trapping occurs 
after excitation ouer the barrier, then the condition is that Y lies above X. 

Evidence for a delay in the formation of self-trapped excitons can take several forms. 
By far the clearest data are the results of Kuusmann er ul(1976). Their results for NaI 
show both the luminescence of the self-trapped exciton at 4.2 eV and the band-edge 
luminescence at  5.55 eV characteristic of an unrelaxed exciton. The temperature- 
dependence of the luminescence indicates a barrier U’ - 0.02 eV against self-trapping. 
The edge luminescence and self-trapped exciton luminescence were both observed in 
KI  and RbI too, although barrier heights were not quoted. They conclude on the basis of 
excitation of luminescent centres that in NaI the exciton ‘migrates hundreds of lattice 
constants before being self-trapped’. There is similar evidence for solid rare gases, 
summarised by Jortner (1974). Also Nishimura and Tomura (1975) show that in alkali 
halides excitons can migrate up to 75 A before producing F-centres. 

Earlier work which suggested a barrier relied mainly on the temperature dependence 
of luminescent efficjacy, either of the self-trapped exciton itself or of some other lumines- 
cent centre to  which energy is transferred. Whilst these data (Kink and Liid’ya 1969, 
1970, Vasil’chenko et al 1970, Fontana et al1968,1969, Lushchik et al1972) may indicate 
a barrier, other possibilities cannot be ruled out. These authors consider, on the basis of 
excitation of luminescent centres, that the exciton migrates. However, the rapid exciton 
motion could occur not only in the unrelaxed exciton state with a delay before self- 
trapping but also in the states of an instantly self-trapped exciton in which the hole is 
excited (Wardle and Murray 1973). Further, the efficiency of self-trapped exciton lumines- 
cence can have a temperature dependence of a similar type arising froin the thermal 
population of different spin states from which spin-allowed transitions can occur 
(Purdy and Murray 1975, Song and Stoneham 1975). A detailed analysis is needed to 
identify the precise mechanism involved. But it remains a real possibility that the activa- 
tion energies indicated are associated with a barrier to self-trapping. There is here the 
question of whether excitons can decay to the (presumably) lower triplet state before 
decaying. 

Turning now to SO, ,  one of us (Mott 1977) has discussed the evidence that the peak 
in the absorption spectrum at 10.2 eV observed in crystalline and amorphous SiO, is 
due to an exciton, and it was pointed out that the sharpness of the peak contrasts with the 
very broad band due in the glass to the non-bridging oxygens associated with sodium 
ions. If as we suggest here holes can be self-trapped, it is likely that excitons can be too. 
If so, the sharpness of the line implies that there must be a barrier to self-trapping, and 
thus that in the crystals the exciton is mobile and in the glass that it can move within a 
weakly localised state. We conjecture that the mechanism of recombination is that of 
Dexter er a1 (1955), occurring after the coordinate q penetrates the barrier; if so, recom- 
bination rather than self-trapping must be the normal event. Self-trapping would lead 
to  fluorescent radiation, which is not observed in the pure material (Sigel 1973). 
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3. Analogues of self-trapping 

Several systems behave in a way which resembles the dielectric and self-trapped polaron 
case we have described. One system shows an especially close analogy : the V--centre 
in simple oxides like MgO, CaO, SrO, ZnO, B e 0  and Al,O,. Here a hole is trapped by 
a cation vacancy. The analogue of the large polaron corresponds to a hole shared 
equally among the nearest-neighbour oxygen ions. The analogue of the small polaron, 
which i s  actually observed experimentally, has a hole localised on a single oxygen 
neighbour. The gain in lattice polarisation and distortion energy exceeds the advantage 
in  kinetic energy when the hole is shared (see, e.g., Norgett et aE 1977). Thus the physical 
basis of the behaviour parallels the polaron case closely. However, the analysis of Schir- 
mer (1976) indicates no barrier. This difference can be understood from the following 
argument. Emin and Holstein’s analysis of self-trapping concentrates on questions of 
scale, that is on how the energy of a carrier changes when a scale length is altered. The 
result involves competition between the enhanced kinetic energy and lowered potential 
energy as the scale length is reduced. Very similar relations appear in the bound polaron 
problem (Larsen 1969). However, the V--centre does not involve a scale length in the 
same way, and this is the reason that it does not show a barrier to self-trapping. Suppose 
the hole to  be in its lowest state when there is no self-trapping distortion. In this state 
the hole wavefunction has equal weights from the oxygen ions next to the vacancy. For a 
small self-trapping distortion, the weight associated with one of the oxygens is enhanced 
by a factorf. Both the kinetic energy and polarisation and distortion energies change by 
order f 2 .  If the polarisation energy term dominates, the centre can move spontaneously 
towards the self-trapped state; if the kinetic energy term is dominant, the system does 
not self-trap. One simply compares two terms of orderf’, and no question of a barrier 
arises. This may be contrasted with the scaling arguments of Emin and Holstein, where 
the kinetic energy varies with scale length A as + A - 2  and the other terms as - A-*, 
with 6 > 2. It is the difference between the powers - 2 and - 6 of the two terms which can 
lead to  large and small polaron extrema, separated by a barrier. The V- centre, with 
both terms in f2, is an analogue of 6 = 2,  which would only give a single solution, 
without an intervening barrier. 

The present arguments are relevant when there is disorder, as mentioned in 82.1. 
Only if the small and large polarons differ in scale, that is in mean square radius, is a 
barrier expected. 

Two other cases appear analogous to self-trapping : the hindered-rotor problem, 
and its complex relation, the Jahn-Teller effect. In both cases, as potential barriers are 
raised, the observed properties move more to those of a localised system. However, 
this is mainly a question of the relative sizes of a tunnelling time and a time characteristic 
of the observation. It is quite distinct from self-trapping. 
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