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Abstract. Previous results (paper I), based on a dynamic relaxation procedure, coupled 
with a valence force potential function to represent the interaction between the atoms 
of the perfect crystal, have been used to calculate the distortion around point defects in 
a diamond-type crystal. The method has been applied to the isolated neutral vacancy 
in diamond and silicon for two alternative choices of rebonding forces for the vacancy 
electrons. In one case the electronic forces have been estimated from a detailed molecular 
orbital calculation, while in an alternative approach a generalized Morse-type potential 
relationship has been used. The formation energy of the neutral vacancy has also been 
calculated. For the vacancy in diamond values of 0.35 and 6.47 eV have been obtained 
using two alternative approximations to calculate the molecular orbital force terms, 
while with the Morse potential a value of -0.37 eV is obtained. The vacancy in silicon 
is estimated to have a formation energy of - 38.8 eV using the molecular orbital para- 
meters and - 16.35 eV using the alternative method. The volume changes associated 
with the diamond-type system containing a vacancy are also calculated. The results 
suggest that one of the approximations used is not valid. Some of the possibilities are 
discussed. 

1. Introduction 
In this paper we calculate some of the measurable properties of point defects which depend 

on lattice distortion. These properties, including the relaxation volume change and for- 
mation energy of neutral vacancies in diamond structure lattices, are estimated using the 
two fundamental approximations described in the preceding article (Larkins and Stone- 
ham 1971, to be referred to as I). The first approximation is the harmonic approximation 
for the lattice dynamics. The appropriate results for diamond and silicon and an analysis 
of the different interatomic potentials were given in I. The results are used here in this paper. 
The second approximation is the assumption that the distortion arises from forces on the 
nearest neighbours of the vacancy; the forces result from the local electronic reorganization 
which occurs in the creation of the defect. These forces are calculated using a detailed micro- 
scopic model in § 2. 

These two approximations are used systematically, and the models chosen for both the 
lattice dynamics and for the defect electronic structure are the best currently available. 
It is therefore surprising that the distortion which results is, in some cases, extremely 
large, and suggests that one of the approximations is not valid. Some of the possibilities are 
discussed. 

2. Calculation of rebonding forces between the vacancy electrons 
To demonstrate the method we calculate the magnitude and symmetry of the rebonding 

forces using two alternative models. Firstly, we propose to use the results of a quantum 
mechanical calculation based upon the defect molecule method of Coulson and Kearsley 
(1957). Secondly, we consider the case where the rebonding of the four vacancy electrons is 
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in terms of two noninteracting pairs such that a tetragonal distortion of the defect results. 
In this case, as in the studies by previous workers, the rebonding is described in terms of a 
generalized Morse potential whose parameters are deduced from the bulk properties of the 
crystal. 

(i) Molecular orbital method 
The electronic properties of the undistorted neutral vacancy in diamond and silicon have 

been determined by the method of Coulson and Kearsley (1957). The calculations (Larkins 
1969) use atomic Hartree-Fock functions determined by Clementi (19651 to approximate 
the s and p orbitals on the atoms nearest the defect. Only the final results will be given here. 

Two cases have been considered for diamond, with different values of the self-penetration 
integra1,P (a(l)IT, + I/,,/a(l)I)described byCoulsonandKears1ey.WithP = -7.13eV, 
calculated directly, the 3T, electronic level is lowest in energy lying 0.31 eV below the 'E 
level; for P = - 16.42 eV, the semi-empirical value it is 0.13 eV below this level. In both 
cases the order of these two levels is inverted compared with the findings of Coulson and 
Kearsley. 

For the vacancy in silicon we consider here just the case where the value of the one- 
centre Coulomb integral, Q, is determined semi-empirically. With Q = 8.10 eV, the lowest 
'E and 3T, electronic levels are grouped together within 0.2 eV of the 'A, ground state, 
with the 'A, and IT, levels 1.15 eV and 1.52 eV above this level respectively. We shall see 
later that these two levels are particularly sensitive to the extent of symmetric distortion 
associated with the defect. 

All electronic levels may be lowered in energy from interaction with the totally symmetric 
mode, 9,. However, only degenerate levels can couple with the distortion modes of lower 
symmetry giving the Jahn-Teller effect. We may estimate the extent of symmetric relaxa- 
tion, and hence energy lowering, associated with a particular electronic level described by a 
wave function $k using equations (I.4.4.)? and (1.4.5) when we know the symmetric force 
term F ,  

/ -  \ 

Fa has been calculated by Larkins (1969). The only possible asymmetric distortion for a 
two-fold degenerate E level results from a coupling to E modes giving a tetragonal distortion 
of the centre (Opik and Pryce 1957). The force term associated with this distortion is defined 
as 

where 10) and I E) are the two electronic states of the E manifold. There are three possible 
tetragonal distortions which represent energy minima for the system; they have symmetry 
axes along the (loo), (010) and (001) directions. We consider just the (100) configuration 
where QB is given by (1.4.4) and Q ,  is zero. For a three-fold degenerate level with states 
I<), I q )  and I () the formal results for the distortion are the same irrespective of whether 
we are considering electronic levels belong to the T, or T, irreducible representation. The 
T states may couple to either the E or T distortion modes such that either a tetragonal or 
trigonal distortion of the defect results. Mixed trigonal and tetragonal distortions do not 
occur for isolated levels, but only when there is accidental degeneracy (Stoneham and 
Lannoo 1969). There are four equivalent trigonal distortions with symmetry axes along the 
(T, T, I), (1, 1, T), (l ,T,  I), and (1, 1, 1) directions and three of tetragonal symmetry 
as previously discussed. We consider just the tetragonal distortion for which Q, = 0 and 

Equations with the prefix I refer to the preceding article (Larkins and Stoneham 1971). 
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QB is finite and the trigonal distortion where Qe = 0, = 0:. For these cases the force 
terms F,, and F,, are defined as follows: 

and 

Using equation (1.4.4) the values of the Q, terms may be calculated. The energy lowering 
for the tetragonal distortion, AE(Qe), is given by equation (1.4.5); for the trigonal distortion 
the energy lowering is given by three times an equivalent expression. 

Table 1. Values of the force terms and the corresponding distortion and energy loweringsf for the two 
lowest levels of the neutral vacancy in diamond using the molecular orbital approach. 

3T, Level 
Case 1 -12.17 -1.09 -6.60 -8.22 -0.51 -2.14 - 5 . 5 8  -0.47 -3.90 
Case 2 -11'97 -1.07 -6.37 -2.09 -0.13 -0.14 -3.53 -0.29 -1.56 
'E Level F E E  &E 
Case 1 -10.97 - 0 9 6  -5.18 -7.92 -0.50 - 1.96 
Case 2 -12.13 -1.08 -6.56 -2.09 -0.13 -0.14 

t The energy lowerings given include both the electronic and elastic contributions. 

The lowering in energy and the corresponding normal co-ordinates for the lowest 3T, 
and 'E levels of the vacancy system in diamond for the various force terms are given in 
table 1. The symmetric relaxation is the most important for both levels. In the two cases 
considered the 3T, level is predicted to be the ground state of the system and to undergo 
a trigonal Jahn-Teller distortion. In case 1 the total lowering in energy of the system associ- 
ated with the 3T, ground state is 10.50 eV, while in case 2 it is 7.93 eV as the result of 
relaxation and distortion effects. From the values for the normal co-ordinates we may 
determine the co-ordinates of the atoms nearest the defect. At equilibrium, allowing 
for symmetric and trigonal distortion of the 3T1 level, the distances between the nearest 
neighbour atoms for case 1 are given by 

AB = AC = BC = 2.10A 

A D  = B D  = C D  = 1.33A 

while for case 2, AB = 1.94 A and A D  = 1.42 A. These distances should be compared with 
the undistorted atom separations of 2.52 A. 

For the neutral vacancy in silicon a similar analysis can be carried out. The values for the 
symmetric force terms for the various lowest electronic levels are given in table 2. Using 
the value for o, given in table 4 of I to calculate distortion and lowering in energy for the 
system an unreasonably large value is obtained. The cause of this poor result is discussed 
in 9 5. 

When the electronic levels from the calculation for the undistorted vacancy in silicon are 
corrected for the symmetric relaxation energy contribution the IT, level becomes lowest 
in energy 2.43 eV below the 'A, level. The order of these two levels does depend upon the 
value chosen for o,. The IT2, but not the 'A, level, may undergo a Jahn-Teller distortion. 
A detailed calculation shows that the trigonal distortion which results corresponds to an 
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electronic energy lowering of 0.24 eV. As a result of these two distortions the ground state 
of the system has been lowered 48.45 eV and the electronic state has changed from a 'A2 
level to a IT2 level. 

Table 2. Symmetric force terms and the corresponding 
energy lowerings and distortions associated with the 
lowest levels of the neutral vacancy in silicon for the 

case where Q = 8.10 eV. 

level (energy (ev 8, - 11 AE( Q,)t (la 
Electronic = 0.18 1014 

F a  

for Q ,  = 0)(eVj (eV) (4 
3T, (-88.99) -7.39 -28'89 - 7.84 
'E (-88.89) -7.57 -30.34 -8.03 
5A,  ( -  89.05) -7.87 -32.83 -8.37 
'A1 (-87.90) -9.55 -48'45 -10'17 
'T, ( -  8733) -9.70 -49'85 - 10'29 

t Electronic and elastic energy contributions. 

(ii) Morse potential method 
Here we assume that the four vacancy electrons rebond in pairs with negligible inter- 

action between the pairs. A tetragonal distortion of the defect results. The pairwise rebond- 
ing may be described in terms of a generalized Morse potential of the form 

where D is the bond dissociation energy, ro the equilibrium internuclear distance in the 
perfect crystal and a1 and a2 are parameters to be determined by the physical properties 
of the crystal. This is the approach which has been used by previous workers (Swalin 1961, 
Scholz and Seeger 1965, Seeger and Swanson 1968, Hasiguti 1968) who also used the same 
potential expression for interactions between the atoms of the perfect crystal. In all previous 
studies except that by Seeger and Swanson (1968) a, has been assumed to be equal to 2a2 
and x 2  determined from the compressibility of the crystal. 

We have determined the value of D from the relation 

D = +(E, + E,) (2.6) 
as suggested by Lidiard (1965) where E, is the heat of sublimation at room temperature 
and E,  is the promotion energy for an electron from the s2p2 ground state of the isolated 
atom to the sp3 valence state of that atom. Lidiard (private communication) has calculated 
E,  for the carbon, silicon and germanium atoms theoretically using Hartree-Fock func- 
tions for the s and p orbitals on the isolated atom. For the carbon atom E ,  was estimated to 
be 7.46 eV which is in good agreement with the estimate of 7.545 eV obtained by Opik 
(private communication to Lidiard) using the experimentally known energy values for the 
spectroscopic states and information obtained by extrapolation from data for isoelectric 
ions. For the silicon atom Lidiard obtained a value of 6.06 eV for E,  which is in good 
agreement with the extrapolated value of 6.22 eV obtained by Skinner and Pritchard (1953). 
We have chosen to use the values obtained by Lidiard as we can find no quantitative evi- 
dence to support the hypothesis of Voge (1936, 1948) that these values for E ,  should be 
reduced in magnitude due to resonance with certain s2p2 configurations. The values for 
E,  are those used by Swalin (1961), Scholz and Seeger (1965) and Hasiguti (1968). Therefore 
we have 

D ,  = i(7.22 + 7.46) = 7.34 eV 

DSi = 3(3*66 + 6.06) = 4.86eV. 
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For diamond the parameters ctl and a, for the Morse potential may be determined from 
the compressibility, P and the Gruneisen parameter, y, because these quantities are essen- 
tially independent of temperature (Mitchell 1965, Berman and Thewlis 1955). However, 
for the silicon crystal y is strongly temperature dependent and cannot be used in the deter- 
mination of these parameters. In the expression for y we use the semi-empirical relation, 
known as the Dugdale-MacDonald relation (Rice et al. 1958) rather than the expression 
derived by Slater (1939) as the former has been found by experience to give more reasonable 
agreement with experiment in many cases. By substitution of equation (2.5) in the appropriate 
expressions we obtain 

1 
- = D ~ l c t ,  
P 

( 2 . 7 ~ )  

(2.7b) 

where a is the cell constant for the crystal (a = 3.56 A (diamond), a = 5.43 A (silicon)). 
For the diamond crystal 1/P = 5.448 x lo1, dyn cm-, (Mitchell 1965) and y = 1.3 (Berman 
and Thewlis 1955) such that 

2: = 3.72OA-1 = 1 . 3 3 2 k ' .  

Because of the temperature dependence of y for the silicon crystal we use only equation 
(2 .7~)  with a, = 2z2 and 1/P = 9.793 x lo1' dyn cm-, (McSkimin 1953). Hence we obtain 

,Si 2 = 1.01A-I 

We may now determine the tetragonal forces on the atoms nearest the defect, which are 
J8 a/4 8, apart, from the relation 

Hence, from equations (1.4.4) and (1.4.5) the extent of distortion and energy lowering 
corresponding to these forces may be determined. The results are shown in table 3 for the 
configuration where Q, = 0 corresponding to the case where the vacancy electron on 
atom A is bonding with the vacancy electron on atom B. The predicted lowering in energy 
due to the rebonding of the vacancy electrons in pairs using the Morse potential method 
is less than the energy lowering calculated when the rebonding was described within the 
molecular orbital formalism. We may also use our dynamic relaxation method to go beyond 
equation (2.8) and allow the forces to alter as the atoms move. 

Table 3. Lattice distortion and energy lowering associated 
with the neutral single vacancy in a diamond-type crystal 
for tetragonal rebonding forces described by a Morse- 

type relation 

Diamond -14.99 -9.05 -0.55 - 1.09 
Silicon -6.78 -22.23 -3.04 -5 .88  

3. Volume change associated with vacancy relaxation 

volume of a diamond-type crystal with a vacancy may be determined from the relation 
Using the continuum theory of lattice defects discussed by Eshelby (1956) the change in 
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where K is the bulk modulus (= 1/p) for the crystal, ro is the nearest neighbour distance 
and Fa is the total symmetric force for the vacancy. Now the atomic volume is 8r;/343, so 

Using the values for K and r,, given previously we have for the diamond crystal 

A V  
V 
- = 2.67. lo-' Fa 

while for silicon 

where Fa is eV A-  ', 
Using the values for Fa obtained by the molecular orbital method, we have for diamond 

(case 1, calculated P integral) 

(case 2, semi-empirical P integral) 

A V  
~ = -0.31 

V 

A V  
- = -0.32 
V 

while for silicon the change in volume from lattice relaxation is 

No experimental results are at present available. 

4. Formation energy of the single vacancy 
(i) Molecular orbital approach 

It is now possible to make some estimate of the formation energy of the vacancy in the 
crystal. There are three contributions to this energy which must be considered. 

First, the energy required to remove an atom from its perfect lattice site and place it on 
the surface of the crystal. This contribution to the energy is 2 0  where D is the bond dissoci- 
ation energy. We note that 2 0  E,  + E,, from equation (2.6). Seeger and Chik (1968), 
Swalin (1961), Scholz and Seeger (1965) and Hasiguti (1968) omit the important promotion 
energy term. 

Second, the difference in energy between the configuration in which the four vacancy 
electrons are in the ground state molecular orbital for the undistorted system, and a 
configuration where one electron is in each of the four hybridized orbitals with spins in a 
mutually random orientation. To calculate this difference we follow the method used by 
Coulson et al. (1963) for the vacancy in graphite. It is convenient to refer the energies of the 
two states to the energy of a third state in which the defect electrons are absent. Thus we 
consider the three states shown in figure 1:  the reference state (I), the state I1 with one 
electron in each orbital and mutually uncorrelated spins, and state I11 with the electrons 
in their lowest electronic state. In all these cases we assume that the atoms are at their perfect 
lattice sites and that the electrons other than the defect electrons are in their perfect lattice 
states. Ed = E,, - E,,, is then 

E d  = - - (EIII - (4.1) 
The first term may be calculated following Coulson et al. (1963). Multiple exchange terms 
are important, especially for diamond, and we have always included them in full. For 
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reference table 4 also includes the values with only single exchanges. The second term in 
E,  can be calculated directly in the defect molecule approach (Larkins 1969) and is also 
given in table 4. Analogous calculations have been made for the vacancy in germanium by 
Hwang and Watt (1968). 

A 

C 
( I )  I I  1 ( 1 1 1  1 

Figure 1. Various states of the vacancy system. (I), no vacancy electrons; (II), four 
vacancy electrons having mutually random spins; (111), four vacancy electrons in the 

ground state electronic level. 

Third. the contribution to the formation energy is the lowering in energy of the system 
which results from a relaxation of the atoms near the defect. This contribution, designated 
E,, was calculated in the previous section. Therefore we have a formation energy 

E, = 2 0  - E ,  - E,. 

The results obtained are given in table 4. 

Table 4. Values of terms contributing to the formation energy of the single vacancy in diamond and 
silicon using the molecular orbital approach 

Crystal Ell - E," €11 - E; €11, - €f E* Er 
Diamond 
Case 1 - 13.29d - 74.93 - 18.76 3.83 10.50 
3T1 level 
Diamond 
Case 2 -114'41 -115.00 -115'28 0.28 1.93 
3T, level 
Si 1 icon 
Q = 8.10eV - 88.8 1 - 88.95 - 89.05 0.10 48.45 

( jA2) 

a single exchange only; 
multiple exchange terms included; 
from molecular orbital calculations (Larkins 1969); 
all energies in electron volts. 

2 0  E ,  

14.68 0.35 

14.68 6.41 

9.72 

(ii) Morse potential method 
It is again possible to use the expression (4.2) to determine the formation energy of the 

vacancy with this approach provided we redefine E,  as the difference in energy between the 
electrons in configuration I1 and a configuration with the electrons tetrahedrally bonded in 
pairs with the rebonding described by a Morse-type potential. Now this difference is equal 
to - 2U(r)  where U(v) is given by equation (2.2) for r = (8/3)+r0. For the diamond Ed = 6.00 eV 
while for silicon E ,  = 3.84 eV. These values are very much larger than those given in table 4 
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and underline the difficulty of using a simple pairwise potential of these form. Using these 
values we obtain the following results for the formation energy : 

E ,  (diamond) = -0.37 eV 

E ,  (silicon) = - 16.35 eV. 

Preliminary calculations suggest that if we perform an explicit dynamic relaxation using 
the Morse potential relationships given above to describe the tetragonal rebonding forces 
slightly higher, but still negative, values are obtained for the formation energy of the isolated 
vacancy in diamond and silicon. Such calculations allow for the dependence of the forces 
on the nearest neighbour configuration. 

5. Discussion of results including relation to experiment and previous calculations 
In this paper we have used the dynamic relaxation procedure to calculate the distortion 

associated with the isolated single vacancy for two choices of rebonding forces. The results 
of paper I should be applicable to other point defects as well as alternative models for the 
force expressions describing the electronic reorganization. We have concentrated on the 
configuration of the atoms which are nearest the defect, but it is possible to determine the 
response of atoms far from the defect due to the applied forces. In this connection we have 
noted that fifth neighbours to the defect displace more than third or fourth neighbours 
for given forces on nearest neighbours. This characteristic of the diamond-type lattice 
agrees with the finding of Herman (1959) when calculating the vibrational spectrum of 
germanium. 

In our calculation of the vacancy formation energy and of the relaxation volume per 
vacancy we believe that the values obtained from the molecular orbital method are the 
most reasonable. The serious limitation of the alternaiive Morse potential approach 
is that the potential curve is deduced from data near r,,, the equilibrium internuclear sepa- 
ration, and is then applied to the second nearest-neighbour distance. Further, the Morse 
potential approach neglects the interaction between the two pairs of vacancy electrons. 

Unfortunately, there are no experimental estimates of the formation energy of the iso- 
lated vacancy in diamond. It now seems established that the formation energy for the iso- 
lated vacancy in graphite is around 7 eV (Henning 1965, Henson and Reynolds 1965, 
Simmons 1965), and it is possible that it is similar in magnitude in diamond. Such a value 
would be close to our prediction of 6.47 eV for case 2, although it is much larger than 
our other estimate. Previous estimates of 4.16 eV (Swalin 1961) and 5.79 eV (Scholz and 
Seeger 1965) used rather restricted relaxation procedures and pairwise interactions between 
all atoms; Bennemann's (1965) estimate of 3.68 eV was obtained from a band theory 
calculation for the unrelaxed vacancy. 

The experimental value for the formation energy of the neutral vacancy in silicon is 
still subject to disagreement. Values of 4.73 eV, 4.88 eV and 5.14 eV have been reported by' 
Ghoshtagore (1966), Wilcox and La Chapelle (1964) and Masters and Fairfield (1966) 
respectively. However, Watkins (1963) has deduced a lower value of around 3 3  to 4.0 eV. 
These may be compared with the theoretical estimates of Swalin (1961), Seeger and Swanson 
(1966), Scholz and Seeger (1965) and Bennemann (1969, using rather restricted models, 
which all lay in the range 2-3 eV. Our estimates using the effective frequencies of paper I 
and either of the sets of forces are unsatisfactory. Indeed, the formation energy has the 
wrong sign, and the lattice appears to be unstable against vacancy formation. This suggests 
that our analysis is incomplete (strictly we could have made a numerical error, but there 
are a number of checks which make this unlikely). There is, in fact, one obvious omission, 
even ignoring possible anharmonic terms. The electronic energy contains terms linear, 
quadratic and of higher order in the displacements. The quadratic terms (which may 
include cross-terms as QaQe) may be interpreted in two ways: as a displacement 
dependence of the forces, or as an extra term in the effective force constant. The problem, 
of course, is much more complicated, but is still soluble since there are no anharmonic 
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terms. Calculations using such higher terms have already appeared for the F-centre in 
alkali halides (Stoneham and Bartram 1970). These quadratic terms are not easy to calculate, 
and probably need more accurate wavefunctions than we have at our disposal. However, 
to illustrate the effect of changing the effective force constants we have rederived the for- 
mation energy using the frequencies o, = wE = ,/2 oT = 0.825 rad s - l  obtained by 
Lidiard and Stoneham. The formation energy for the silicon vacancy becomes 8.50 eV 
using the molecular orbital method and 4.71 eV with the Morse potential approach. These 
values are more in line with the experimental results. They tend to confirm the view, also 
supported by the volume-change results, that the effective forces are satisfactory. We note 
however, that the molecular orbital method as developed requires the atoms neighbouring 
the vacancy to be sp3 hybridized. Any change in the hybridized state of these atoms would 
reduce the electronic force terms. Finally, we should emphasize another possibility. The 
phonon dispersion curves do not uniquely define the force constants (Slater 1958, Tewary, 
private communication) and it is possible that we have simply used incorrect interatomic 
forces in paper I. Intuitively, this possibility seems unlikely. 
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