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Abstract. Results for the volume change and dipole tensor for point defects are derived using 
a generalisation of the Betti reciprocity theorem. These results incorporate the correction 
terms derived by Flynn, by Lidiard and by Gillan in a simpler way, and allow some more 
general results to be obtained straightforwardly. 

Calculations of volume changes caused by defects in solids often use an expression 
involving the virial of the defect forces (Hardy 1968, Temkin 1970): 

axes sites 

with s the elastic compliance, and FI the defect force on the neighbouring ion at site Ri .  
The expression has, however, been consistently unsuccessful in its predictions. Whilst 
some of the weaknesses can be shown to result from inadequacies in working approxi- 
mations commonly made in evaluating the virial (Schober and Ingle 1980, Gillan 1983), 
the main problem is, in fact, an inconsistency in the expression itself. Whilst this point 
is comprehensively discussed by Gillan, it proves both useful and revealing to give a 
re-analysis parallel to the elegant discussion of Temkin. 

Temkin exploited the so-called Betti reciprocity theorem (for fuller references see 
Stoneham 1975). We cannot use the same theorem, for it relies on an assumption of a 
harmonic host, and so it specifically excludes some of the critical corrections noted by 
Flynn (1971), Schober and Ingle (1980), Lidiard (1981) and Gillan (1983). Fortunately, 
we can exploit the central idea used in the proof of the Betti theorem, and hence we can 
produce a generalised theorem as a by-product. The central thesis is this: the final state 
reached by applying two sets of forces F1 and F2 to a solid is independent of their order 
of application. 

In our case, the forces F 1  will be the defect forces, and the forces F2 will correspond 
to an external pressure p .  The two sequences of application of these forces are shown 
schematically in figure 1, together with the displacements (represented in the diagram 
as a scalar, essentially a projection of the displacements corresponding to the volume 
change) to which they give rise. We are free to choose the pressurep (i.e. F 2 )  such that 
XII %= X I ,  XIII. Quantitatively, this requires a pressure p producing a volume change for 
the whole crystal which greatly exceeds the volume change due to a single defect, i.e. a 
fractional volume change in excess of lo-** typically. Our final result will be independent 
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Figure 1. This shows schematically the two sequences by which the forces F1 and F2 are 
applied. The distortion is represented for this figure alone by a scalar x ,  and the changes in 
x in the three regimes of distortion referred to in the text are labelled. For practical purposes 
x may be thought of as a measure of volume. 

of p .  With this choice the interatomic force constants and elastic constants may be 
assumed constant within regime I and constant (though different) with regime 111. Any 
averages over the distortion-dependent force constants in the combined regimes (I + 11) 
will be essentially the same as in the combined regimes (I1 + 111). These assumptions 
about force constant changes are sufficiently general to include all the extra terms 
identified by Gillan, yet allow one to minimise algebraic complexity. 

When F1 is applied first, the work done between the initial and final states contains 
three terms: 

E: relaxation energy under forces F1 with force constants appropriate to 
regime I. 

EF"' relaxation energy under forces F2 with force constants appropriately 
averaged over regimes (I1 + 111). 

F1 ' A2 work done against F1 by the displacements due to F2; A2 = XII + XIII 
here. 

When F2 is applied first, there are again three terms: 

Eb 11 

E111 1 

F2 - A I  

relaxation energy under forces F2. With the assumption XII B XI ,  XIII 
this term is identical to E~'~"'to order ( A V ) 2 .  
relaxation energy under forces F1 with force constants appropriate to 
regime 111. 
work done against forces F2 by the displacements due to F1 (strictly 
with force constants appropriate to regime 111, though this distinction 
is not needed for present purposes). 

Collecting terms, and cancelling E~'~"' and E$" consistent with our assumptions, we find 
a generalised form of the reciprocity theorem: 

F2 * A1 = F1 A2 + ( E !  - E!"). (2) 
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It is AI which will prove proportional to the defect-induced volume change. The first 
term on the right leads to the standard expression of Hardy and Temkin, and the second 
term on the right leads to the correction of central interest here. 

We can now derive the key result for the volume change AV. If F2 corresponds to an 
external pressure, then (cf Temkin 1970 or Stoneham 1975) the left-hand side is merely 
-pAV, and the first term on the right-hand side reduces by previous methods to 

Thus we have now 

A V =  AVhrial + (E{”- Ef)/p.  (3) 
But E{’’ and E{ differ merely by the change in relaxation energy under forces F1 as the 
force constants are changed by the applied pressurep. Simply rewritten: 

where Erel is the relaxation energy and B the bulk modulus. Since it is well known from 
other work that A V  is ( aE~o,,,,o,/ap), it is clear that AVv,,ial corresponds to the pressure 
dependence of an ‘unrelaxed’ defect formation energy calculated with forces appropriate 
to the relaxed geometry. This division is slightly different from the usual convention, 
which refers to forces for the unrelaxed geometry. The present choice stems from two 
features. First, our arguments leading to equation (2) assume F1 is constant, unaffected 
by F2. Secondly, these arguments require equilibrium at each stage. Both these points 
can be satisfied (subject to restrictions discussed later) if one replaces the real 
(configuration-dependent) forces by effective (constant) defect forces which give the 
same equilibrium distortions, i.e. forces appropriate to the relaxed geometry. 

We may now exploit our result (4). First, consider a neutral defect in a solid for which 
the Gruneisen constant is y -a In w/a In V. The relaxation energy is proportional to 

in simple models, so that we have 

A V  = A Vvirial - 2yE,,JB. ( 5 )  

Secondly, consider a charged defect in a non-metal with dielectric constant E .  The 
relaxation energy is dominated by the polarisation term (e2/2R)(1 - E - ’ ) ,  where the 
cavity radius R is not normally the nearest-neighbour distance (Mott and Gurney 1948). 
We find immediately a result corresponding to that given by Lidiard: 

Instead we may regain Flynn’s result at once by concentrating only on terms in dc/ap 
and using equation (4): 

dln(E)  A V  - AVvirial = [ (e2/2R€)]  -. 
dP (7)  

Since previously we had decided against Flynn’s suggestion as an explanation of dis- 
crepancies between theory and experiment (Mainwood and Stoneham 1975), it is useful 
to note how that erroneous conclusion arose. In the earlier work, we (correctly) used 
forces F1 obtained from a model which (correctly) included electrostriction. The error 
lay not in the codes used, nor in the models of interatomic forces, but in the omission of 
the dErel/dp term; at that time thevirial term alone appeared (incorrectly) to be adequate. 
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We note that the relaxation energy is quadratic in the defect forces, i.e. dependent 
on their magnitude only. In particular, defects with opposite net charges +e and -e will 
still have the same sign of (AV - AV~vi,.,~l) in a given host. Defects both large and small 
in an elastic medium will also contain a term with the same sign of (AV - AVvlna,). It is 
terms such as these which can contribute to deviations from Vegard's law for alloy lattice 
parameters. 

Thirdly, we may ask what effect occurs on the anisotropic components of the defect's 
elastic dipole tensor. This is especially important for ionic systems, since anomalies were 
noted here (Mainwood and Stoneham 1975). There are exactly parallel terms, which 
generalise Stoneham's (1973) results in terms of the virial. The relative importance 
depends on the relative magnitudes of the stress derivatives of the dielectric constant. 
If one writes 

E+ E + 2 Yl,Ul, 
131 

then, for cubic crystals, the volume change will depend on (yll + 2y12), the cube-axis 
dipole strength on ( yll - y12) and the trigonal axis dipole strength on y44. For non-polar 
crystals we can relate the yll to the photoelastic constants: 

&, = -$pl,km. 

The expressions of Stoneham (1973) for the asymmetric length change gain an extra 
term, i.e. ( X I ,  - xl) is given by its virial component, plus a correction. If the relaxation 
energy is taken as Erel = (e2/2R)(1 - E-'), and if we ignore any variation of R, the 
corrections to (xi1 - x l )  are of the form (-2/2R)(pll - p12)/(c11 - c12) for (100) defects 
and (-e2/2R)3p4/2c4 for (111) defects. 

One final point of caution is needed. If the defect forces F1 change between regimes 
I and 111, a further generalisation is needed. Such problems can be anticipated, for 
example, when the defect forces result from a major change in electronic state. When 
an F centre is excited, one expects a volume change between the relaxed excited state 
(FZ) and the relaxed ground state (Fg), and one would expect the difference in defect 
forces to be pressure-dependent. That this is so is easily demonstrated by a very general 
argument. If the cycle Fg+ Ff + F, is completed, there must be no net volume change, 
for the system has returned to its original state. This is automatically satisfied when 
AVvlnal appears alone. But the sum of the relaxation energies in the two stages is given 
by the observable Stokes shift, the difference between optical absorption and emission 
energies. If the Stokes shift shows any pressure dependence, expression (4) is not 
adequate, and one should return again to a more general form. 
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