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Abstract. We consider the transport, electromagnetic and thermodynamic properties of a 
granular high-T, superconductor by constructing a model of weakly coupled (Josephson 
junctions) superconducting and normal grains. We start by using an effective medium 
theory (EMT), for the conductivity and susceptibility, which is supplemented by London 
electrodynamics ,jbr the superconducting grains, in the limit of weak magnetic field and zero 
transport current. Next we assume a Gaussian distribution of junction resistances R,  with 
mean & and variance b, which determines the Josephson coupling energy between grains. 
The criterion that this energy must be greater than kT for superconducting clusters enables 
us to determine the superconducting fraction cs as a function of temperature. With this we 
complete the determination of the conductivity and susceptibility of our model. We also 
discuss the specific heat, neglecting fluctuations, which is directly proportional to cS, in our 
approximation. Throughout this paper, we adopt the Ginzburg-Landau (cii) expressions 
for the energy gap A (order parameter), which is valid near T,, and for the specific heat CH, 
but we allow for possible deviations of numerical coefficients in these expressions from the 
Bardeen, Cooper and Schrieffer (BCS) microscopic theory, by introducing phenomenological 
parameters. We find, in accord with experiments, differences between the temperatures of 
zero resistivity, of resistivity drop, and for maximum Meissner effect. 

1. Introduction 

The new oxide high-T, superconductors YBa,Cu,O,-,, and the related Bi and T1 
compounds are polycrystalline due to their chemical natures and to the sintering 
preparation process [l]. Only recently has there been successful preparation of single 
crystals, where important measurements of superconducting characteristics have been 
made [2-51. Even so, such crystals are often marred by defects, twinning, impurities 
etc. Whilst recently good single crystals have been made where observed Abrikosov 
flux lattices are uniform over micrometre scales [ 6 ] ,  it is very unlikely that commercial 
applications of high-T, superconductors will use other than polycrystalline materials 
in the forseeable future. This, together with the vast quantity of experimental data 
that has been gathered over the last two years on polycrystalline materials, urgently 
calls for the development of an adequate description of the measured properties of the 
granular material. 

In this paper we initiate this task for the important regime near T,, where the 
resistivity, susceptibility and specific heat profiles are subjects of many experimental 
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investigations [7-lo]. We assume that the normal state properties, far above T,, are 
adequately described by effective medium theories, as considered by several workers 
[ll-131. For the present work we shall only consider the case of low applied current 
and small external magnetic field in order to avoid complications from flux flow, 
energy gap and phase dependences on fields etc. Our aim is to first establish the basic 
principles that can qualitatively account for the various measurement profiles near T, 
in the zero-field, zero-current limit. We begin in section 2 by reviewing the effective 
medium theory (EMT), dating back to Garnett, Clausius, Mossotti and Bruggeman [14]. 
We will show the necessary modijications when this theory is supplemented by London 
electrodynamics [15]. In particular we shall show the consequence of the difference in 
boundary conditions associated with the electric current J and the magnetic induction 
B for a superconductor. As we shall see, this leads to a different behaviour for the 
resistivity compared with the susceptibility since the London penetration length j. plays 
an important role for the latter. We will also argue that this behaviour will persist 
even when the EMT is improved by incorporating percolation theory, either via a 
phenomenological approach [16], or by more sophisticated methods [14]. 

The EMT theory as constructed here predicts the dependence of the resistivity on 
the superconducting fraction c, alone while, as mentioned, the magnetic susceptibility 
depends both on c, and also on the temperature T (via 2). Although such a theory 
would be adequate for $xed composites, our model material in fact has a fraction 
(is which varies with T due to the weak-link Josephson coupling between grains. In 
section 3 we shall include this temperature dependence by assuming the criterion that 
for superconducting clusters the Josephson coupling between grains must exceed k T .  
We shall argue that once this criterion is met, we can assume perfect phase coherence 
between grains, i.e. we shall neglect phase dependences. This is valid only because we 
operate in the regime of weak fields and applied currents as mentioned earlier. The 
specific heat C, profile, which we assume to be proportional to c,, is also plotted. 
This is added to an artificial linear background for ease of reference with experiments. 
Throughout this work we shall use the Ginzburg-Landau (GL) [I71 expressions for 
the gap and specific heat jump A C .  However, we shall include possible departures 
of the relevant numerical coefficients from the Bardeen, Cooper and Schrieffer (BCS) 
[18] microscopic theory with the use of phenomenological parameters, until a clearer 
picture for the mechanism of high-T, superconductivity emerges [19]. Our results and 
discussions are presented in section 4 and we shall conclude with several comments on 
how the present model may be improved, particularly in the situation where there are 
finite magnetic field and transport current. 

2. Effective medium theory 

The effective medium theory has a long history, being developed by Maxwell, Garnett 
and Bruggemann [14] for their study of the electromagnetic properties of heterogeneous 
media. We shall not review this theory here, as an excellent article has been written 
by Landauer [14] and the theory further developed by Stroud [20] for transport 
coefficients in applied fields, e.g. the magnetoresistance. Hence we shall only outline the 
basic principles and carry out the calculations for the quantities we are interested in 
for our specific model. We remind the reader that our basic formulation can be carried 
over to other situations in view of the classic analogies between different quantities 
in electromagnetism, e.g. the electrostatic displacement D ,  permittivity 6 ,  electric field 
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E (which are static quantities) and the electric current J ,  electrical conductivity CT 

and electric field E (which are steady-state quantities). Similar analogies apply to 
magnetic quantities [21]. Care however must be exercised in applying the results of 
EMT for a superconductor. Not only are there essential niodijications due to London 
electrodjmmics [15] but, as we shall see, the boundary conditions for J and B now 
differ in this case. We first remark here that several results in the next two subsections 
are pedagogical, They can be found in standard textbooks [15,21--231, but are included 
here for the convenience of the reader. Experienced readers can go straight to (14)  in 
section 2.1 and (23) in section 2.2. 

2.1. Magnetic permeubility and susceptibility 

We shall start by considering the magnetic permeability of a two-component system 
with one superconducting medium with fraction c, while the other medium is normal 
with fraction c, (cb + c, = 1 ) .  Consider a normal spherical granular inclusion immersed 
in an  effective medium of permeability p,,. The equations of Maxwell [22],  namely 

div B = 0 

curl H = 0 

together with the boundary conditions for the continuity of the B and H fields normal 
and parallel to the boundary surface$ 

B ,  continuous 

Hll continuous 

lead to the following solutions (see figure 1 )  for the fields H oulside and inside the 
grain : 

outside ( 3 a )  

and 

inside 

(see figure 1) .  The coefficients C, and A ,  which are determined from the boundary 
conditions (equations (2a) and (2b) )  are given by 

H = ( H ,  + ~ , ~ , r - j )  COS o U ,  + (-H() + C,V- sin H U ,  

H = -A ,  cos 0 a, -t- A ,  sin 0 (3b)  

in terms of the permeabilities p g  and pm of the granular inclusion and the medium 
respectively. H ,  is the external field which is in the direction of the polar axis z. The 
total flux Og threading the inclusion is therefore given by 

$ As discussed in most textbooks [23], equation (20) follows from equation ( la )  by integrating over the 
boundary. Equation (2h)  follows similarly from equation ( l h )  and the absence of a surface current jsurpace. 
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The above formulae are standard textbook results [21] which can be straightforwardly 
modified for ellipsoidal inclusions [2 11 : 

where b is the semi-minor axis of the ellipsoid and the depolarising factor P is given 
in terms of the eccentricity E as: 

p = -  1 - & 2  63 
[:In("> 1 - - E  - 6 1 .  

The limiting cases are P -+ 1/3 for spheres and P -+ 0 for thin rods. Depolarising 
factors for spheroids and ellipsoids have been tabulated by, among others, Stoner [24] 
and Osborn [25]. 

axis) 

Figure 1. Spherical granular inclusion of radius U and permeability pg (normal) or pLs (su- 
perconducting), in an effective medium of permeability p,,. Various geometrical quantities 
are defined for use in the text. 

Consider now the case when we have a superconducting inclusion with permeability 
ps. We expect that when the temperature T < T,, the critical temperature, when there 
is complete flux expulsion, ,us and therefore the total flux Os will be zero. The situation 
changes near T,, however, as the penetration length 2 diverges. In this case we should 
consider inside the grain the solution of the London equation [15]: 

curl curl B = - ( I / ; , ' )B  (7) 

where i. is the London penetration lengtht, which diverges at temperature T as 

For YBa,Cu307-d, i,, is nearly 1400 A, with T, about 91.6 K [26]. In fact, outside our 
superconducting sphere, the solution to equation (7) is similar to that of equation (3a), 

t As a matter for future consideration, i t  may instead be more appropriate for a granular superconductor 
to take i. = i.J (the Josephson penetration length); see [30] later. 



High- T,. granular superconductors 943 

but we must now allow for a different integration constant S, to be determined by the 
boundary conditions equation ( 2 )  : 

outside 

Inside our superconducting sphere the solution to equation (7) has been written down 
by London [ 151, namely: 

H = ( H ,  + 2 ~ , , , ~ - ~ )  cos e a,. + ( - H ~  + ~ , r - ~ )  sin e an. (90)  

inside 

where the functions u(r )  and v(r) are given by: 

B = u ( r )  cos ea,. + v(r) sin Ha, (9b)  

u(r )  = CO ( :)3 [sinh (i) - ( f )  cosh ( f ) ]  

and 

u ( r )  = 5 ( :)3 [ (1 + $) sinh (r) - (f) cosh (f)] 
2 A 

( 9 4  

Applying the boundary conditions equations ( 2 )  to these solutions we easily obtain the 
following expressions for our integration constants S ,  and CO: 

CO = -3p,H0 (:) [sinh (31 -’ 
8s m = -- (U?) [ I  + 3  ($- 3 (i) coth (31. 

In contrast with equation (5) the total flux threading a superconducting spherical 
inclusion is thus 

DS = 37cp,H,(~~.)G,(a/i.) ( 100) 

where C,(x) is the well known Langevin function of magnetism given by 

G,(x) = coth(x) - l / ~ .  (1 Ob) 

We note that equation (loa) tends to zero in the limit of complete flux expulsion 
>./a -+ 0, and to equation (1 1) below in the limit of Ala -+ CO ( T  = T J ,  as it must. In 
the absence of the spherical inclusions the total flux should of course be 

am = na*p,H,. (1 1) 

We can now define the flux deviations AQg and AQS as 

A@, = @, - Q, 

AOs = Os - @,. 

The principle of zero average flux deviations constitutes the effective medium 
approximation [14]. Thus averaging over grain fractions: 

(1 - c,)AQ,, + cSAOs = 0. (1 3) 
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We can now apply this result to our model, thus: 

Here cg is the fraction of normal grains, cs is the superconducting fraction and now we 
also include c,, the fraction of voids which we assume to have the permeability of free 
space / io .  The experienced reader will recognise this as the standard EMT result, apart 
from the last term. This term corresponds to the magnetic dipole polarisability of a 
spherical superconductor. Equation (14) is a quadratic equation for the determination 
of the effective permeability pm of the granular composite superconductor in which 
Z,(.u) is the function 

Z,(X) = 1 - (3/x )  GL(X).  ( 1  4h) 

However we shall make the simplifying assumption that / io  = pg for the rest of this 
paper, otherwise a separate experimental measurement of / i g  for single crystals in the 
normal phase will also be necessary. We shall leave this as a refinement for the future. 
With this assumption equation (1  4a) yields the relative permeability of the granular 
superconductor as 

We note the following limiting cases: (i) ] . /U  -+ x (i.e. T -+ Tc), Z ,  -+ 0 and (ii) 
~ J u  + 0 (i.e. T -+ 0), 2, -+ 1 ; where the critical (i.e. percolating) fraction cLs varies 
from 1 to 2;3 respectively. In section 4 we shall be plotting the relative susceptibility 
ls which is sometimes measured 

where the complete Meissner effect [15] corresponds with / i s  = 0 or xs = -1/4n as 
usual [21]. 

2.2. Resistivity 

In view of the analogies mentioned in section 2, the case of electrical transport 
can be directly transcribed from the last section, for a normal conducting spherical 
inclusion. We merely replace the magnetic induction B by the steady-state current 
J .  the permeability pm by the electrical conductivity om and magnetic field H by the 
electric field E.  We also note that the analogous boundary conditions are equivalent 
to equation (2) in this case. namely: 

J ,  continuous Ell continuous. (17) 

We can therefore immediately write down the total current flux threading our normal 
grain from equation ( 5 )  as 
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From this AIg follows, analogously to equation (12). One then expects that for a 
superconducting inclusion, I ,  follows from equation (18) by setting og = os = x, or 
equivalently, the resistivity ps = l/os = 0. This result is rigorous, in fact, a t  least at the 
level of London electrodynamics [15], as opposed to the Ginzburg and Landau [17] 
theory, where there are effects due to the short coherence lengths. This expression of 
I, can be proved easily in the following way. Inside the spherical superconductor the 
analogous London [15] equation (7) for current density J is 

curl curl J = -( t /;.’).I (19) 

and therefore the exact solution equations (9a-d) can be transcribed. We write them 
here for completeness; they are: 

outside E = ( E o  + 2 X m r - j )  cos 0 a,. + (-E, + X,rP3) sin 8 a, 

inside J = u(r )  cos 0 a,. + u ( r )  sin 0 a,) 

where the functions u ( r )  and Li(r) have the same form as equations ( 9 ~ 4 )  

u ( r )  = A ,  (:) [sinh ( f )  - (i) cosh (i)] 
and 

A “ 3  

u ( r )  = 2 (3) [ ( 1  + $) sinh (f) - ( f )  cosh ( f ) ]  

We have deliberately defined different integration constants X, and A ,  as the 
boundary conditions d o  in fact differ from equation (2) or equation (17). They must 
now be [15] 

J ,  continuous E , ,  = 0. (21) 

As a result we find that new integration constants are necessary, and equations (9e-f) 
cannot therefore be transcribed. Using the new boundary conditions equation (21) we 
obtain the new constants as 

A ,  = (4) 30,E a [sinh (f) - (i) cosh (;)]-’. 
Equations (20b-it), (22a-b), together with a simple integration, show that the total 
current I, is independent of the London penetration length 3. and is identical to 
equation (18) by setting the resistivity p s  to zero, quite unlike equation (IOU) for the 
magnetic flux: 

I, = ~ T C U ~ ~ , E ~  QED. (23) 

The experienced reader will again recognise equation (22a) as the induced electric 
dipole moment of a perfect conductor (i.e. dipole polarisability of unity). 
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Following equation (13) we easily derive the resistivity p , ,  a result similar to that 
given by Davidson and Tinkham [16] : 

except that here we have pn which is the normal state resistivity (above T,) given in 
terms of the grain resistivity p g  by 

where c, is, as usual, the fraction of voids, or porosity factor. It follows from equation 
(24a) that the critical fraction for resistivity cib = 1/3 independent of temperature T ,  a 
behaviour significantly different from equation (1 5). 

To conclude this section we note that this difference in behaviour of the resistivity 
(equations (24)) compared with the permeability (equation (15)) follows directly from 
the difference in boundary conditions equation ( 2  1 )  compared with equations (2) and 
( 1  7). As such this difference is no artefact of the EMT but will occur in any higher order 
approximations, for e.g. Lord Rayleigh's [27] regular lattice sum, or with numerical 
calculations [28]. Our results so far are derived using London electrodynamics alone, 
and the direction in which this can be improved will be discussed in section 4. Our 
remaining task is to develop a model for weak links that would give c, as a function 
of T - T,. 

3. Weak-links and the superconducting fraction c, 

To obtain cs, we envisage that grains are coupled by the Josephson energy [29] E given 
by 

E = ($) A tanh (&) 
where R is the junction resistance, and A the energy gap function [18] at the temperature 
T ,  the other physical constants having their usual meaning. Here we have neglected 
the Josephson cosine factor [30] which involves superconductor phases, by considering 
the zero-field, zero-current limit. As is well known, the tunnelling current between 
grains is proportional to the sine of their phase differences [30]. We further neglect 
any capacitative or inductive effects? [31]. From equation (25) we easily obtain the 
criterion for superconductivity, or phase coherence between two grains : the coupling 
energy E must be greater than k T .  This demands that 

where R, in ohms is given by 

R,,, = 1613.36*(1 - T/T,) .  (26b) 

t This depends, among other things, on the intrinsic grain permittivity eg and permeability fig which we 
have neglected: see section 2.1. 
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Here we have adopted the GL expression for the gap function: 

where, according to the BCS theory [18] 6 is about 3.06, but we shall leave it as a 
phenomenological parameter [19]. In equation (25) R depends on the distribution of 
junction resistances. This distribution p(R) of junction resistances will depend on the 
morphology of the grains, the level of contamination or segregation or composition 
change close to the contact, and on other factors. There is an upper value of R, 
characterised by 1613.3 d 2  R, (see equation (26b)) which we need to bear in mind. 
For the distribution p(R) we shall use as a model a truncated Gaussian distribution, 
defined over the infinite half interval. We expect the detailed shape of the distribution 
to be unimportant, but rather that the mean and spread will be critical. Thus the 
distribution of resistances p(R) is taken to be 

where the normalisation constant N, can be easily written down in terms of error 
functions [32]. From these expressions we can obtain c, 

c, = LRm dRp(R). 

Having obtained the fraction c, we can now substitute it in the formulae fou r  EMT (see 
section 2) to predict the magnetic and electrical properties. Before giving the results, 
we shall also discuss the behaviour of the specific heat, albeit only qualitatively see 
section 3.1 

3.1. SpeciJc heat 

Several controversies exist concerning the nature of the specific heat singularity(-ies) 
near T, for single crystals [33]. They still remain to be resolved by experiments and 
theory, even at the phenomenological level [33]. As such our discussions here can only 
be qualitative, as the results will depend very much on the experimental resolution and 
sample characteristics. We include them, however, in order to obtain a flavour of what 
is predicted from our present theory. We first note that the tiny grain specific heat is 
generally well rounded [34], for grain radius a 5, the coherence length, and it does 
not show the famous BCS jump [18] which is given by 

AC = vC,(T,) (30) 

with v =1.43, where C,(T,) is the (normal) electronic specific heat at T,. As in section 
3, equation (27), for the energy gap A, we leave v as a phenomenological parameter 
[19,33] that may be varied. For our case where a + 5, however, we expect that 
individual grains, when superconducting, will contribute the macroscopic GL specific 
heat which is given by 
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for zero current and magnetic fields, and sufficiently far from T, that fluctuations in 
the order parameter are neglected. Therefore in this approximation, the specific heat 
C, is related directly to the fraction c, via 

where we have added a linear background slope x to mimic the lattice and other 
contributions, for comparison with experiments. 

We expect this to be a good qualitative feature of the specific heat for granular 
superconductors down to resolutions of between 0.5 and 1.0 K for grain sizes a B 5. 
This resolution is limited by the fluctuation region, as given by the Ginzburg [35] and 
Brout [36] criterion. Unfortunately there exists the as yet unresolved question of the 
specific heat double transition [lo, 331 and possible twin plane contributions [37], with a 
width of over 3 K. This complicates comparisons between our model and experiments, 
as there exists evidence that specific heat features due to the possible double transition 
are not being averaged out even for polycrystalline samples [lo, 33,381. As such our 
results for the specific heat presented here are only qualitative at this stage, subject to 
refinement, until the above controversies are resolved. 

4. Results and discussions 

In figure 2(a )  we have plotted the normalised resistivity, equation (24a), the relative 
susceptibility, equation (1 6), and the superconducting fraction cs, equation (29), for 
the parameters 6 = 3.06 (BCS), o = 100 0, R, = 500 R, c, = 0.2 (20% porosity). 
The general features of these results agree very well with several experiments [%lo]. 
We have also plotted the specific heat, using v = 1.43 (BCS), in figure 2(b )  for the 
same set of parameters. In figure 3 we have plotted the same results for a different 
set of parameters. We observe that the temperatures Tco, T,, and Tc2, as defined in 
our figures, are higher for figure 3. The shapes of the curves are, however, similar in 
both. This feature is not surprising since they are characteristics of EMT. We expect 
that although precise values for Tco, T,, and Tc2, as well as the power laws near these 
temperatures, are unlikely to be accurate within EMT [28], the general trend, like their 
ordering relative to the bulk T,, will persist even for more sophisticated theories than 
EMT (see section 2.2). These figures are the main results of this paper. 

Let us conclude this section by discussing the various improvements to our present 
theory. We will discuss them in what we view as their order of significance. Firstly an 
improvement over EMT is important for more quantitative predictions, in view of its 
performance being poorer (more so in three dimensions than in two) than percolation 
theory [28]. Davidson and Tinkham [16] have discussed a phenomenological formula 
that fits experiments. We will not discuss their approach here, except to mention that 
it constitutes an ad hoc adjustment of the critical threshold cz, based on a one-term 
Pade approximant. It relies, however, on an unproved assumption for the universality 
of c:. Incorporating this into our equation (24a) is straightforward. This is not so 
obvious for our equation (15), which requires further investigation. In any case such 
an approach will only be fruitful if it is supplemented with numerical calculations 
or cumulant expansion studies [28,39]. The next improvement concerns the separate 
way in which London electrodynamics, section 2, is merged with the weak-link model, 
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Figure 2. ( a )  Plot of resistivity p s ,  susceptibility xi and superconducting fraction cp against 
temperature T for a model sample with the following parameters (see text): Ro = 500 R, 
d = 100 R, 6 = 3.06, T, = 91.6 K and 20% porosity. TCo is the temperature where 
zero resistivity occurs, T,l is where resistivity drop occurs and Tc2 is the temperature of 
maximum Meissner effect. ( h )  Plot of the specific heat CH against temperature for the 
same model sample as in (a). The parameter I' = 1.43, taken from the BCS theory (see 
text), affects only the magnitude of the jump, which is also added to an arbitrary linear 
background for ease of comparison with experiments. 

1 .o 

0.5 
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4.5 

- 1 . 0 : .  1 . 1 .  I '  I '  I '  I 
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L_ 

n 
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Figure 3. ( a )  Similar plot to figure 2(a )  but for a different model sample with the following 
changes in parameters: & = 1000 R, d = 500 R, 6 = 9.0; the others remaining as before. 
Notice the much sharper resistivity drop but still a slow saturation of the susceptibility to 
maximum Meissner effect. ( b )  Similar plot to figure 2 ( b )  for the model sample of figure 
3(a) .  Notice the steeper roll over for this curve that is beginning to look like a jump. 

section 3. They appear as separate entities in our present theory. An approach to 
unify both sections must involve a GL free energy functional [40] which has weak-link 
terms. To develop a new unified EMT based on a variational principle appears to be 
possible. Certainly such a theory will be able to clarify the role of the short coherence 
lengths and to deal with finite currents and magnetic fields. Finally, anisotropy of 
the various superconducting parameters as well as of transport coefficients must also 
be considered. In this respect, one could consider ellipsoidal inclusions or plates with 
tensor conductivities and susceptibilities. This last improvement is quite straightforward 
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for the present theory, which we leave as an exercise for the reader. 

5. Conclusions 

In conclusion we have developed an effective medium theory (EMT) for the magnetic 
susceptibility and electrical conductivity appropriate for granular high-T, superconduc- 
tors. We also predict the rounding of the specific heat jump by directly relating it to 
the superconducting fraction c, which has been obtained via a simple criterion that the 
weak-link coupling energy E be greater than kT. Our central theme is to supplement 
conventional EMT [ 141 with London electrodynamics for superconducting grains. We 
find that new features follow directly from the solution of London’s equation for a 
sphere [15] and the difference in boundary conditions between the magnetic fields and 
electric fields for the superconductor. Since these new features are quite independent of 
EMT, they will also exist for higher order approximations beyond EMT or in numerical 
calculations [ 2 8 ] .  The simplicity of our approach and its agreement with published data 
on YBa2Cu,0,-, makes this an attractive theory which can further be improved in sev- 
eral ways as outlined in section 4. There we proposed several extensions of the present 
theory, while maintaining its attractive features. Needless to say the development of 
theoretical models such as ours is a necessary tool for the processing and commercial 
application of high-Tc superconductors. In addition such a tool is also valuable for the 
interpretation of experiments that probe the mechanism of high- T, superconductivity. 
Finally we note that a natural extension of our EMT to finite frequencies also predicts 
other interesting properties like the microwave absorption spectra in the cm region, 
where the magnetic susceptibility is known to play a crucial role [41]. Details of this 
will be published elsewhere. 
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