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Abstract A theoretical investigation of th~e absorption coefficient of p-type doped porous 
silicon near the band edge is presented. We assume that the absorption coefficient is constructed 
by sing an average over a distribution (in tnms of band gap) of absorption coefficients 
of individual crystallites. Exploiting physics fundamental to the crystallite optical absorption 
process. we derive the relation between the absorption coefficient and the averaged conduction 
density of states near the band edge for porous silicon. By postulating a specific form for 
the effective conduction density of states we find excellent agreement with recent optical 
absorption data for p-type doped porous silicon. We attempt to explain the basis for this postulate 
phenomenologically by suggesting a certain large-scale behaviour of the pmticle size distribution. 
The impliedon of further experimental verification will be discussed. 

, 

1. Introduction 

The precise structural topology of p-type porous silicon is difficult to determine and 
characterize. What is known is that (up to) 80% of the silicon atoms are removed by the 
anodization process and what remains is an interconnected (noodle-like) network of quantum 
crystallites and wires of undulating thickness [ I 4  The exact distribution of shapes and 
sizes is often sample dependent, relying on the doping level (and type) of the bulk silicon and 
on the anodization process. For n-type porous silicon the situation is somewhat simplified, 
the general structure consisting of quantum wires that are predominantly along the [loo] 
crystallographic direction and which do not interconnect [SI. 

From a theoretical perspective,' porous silicon is unique in that it is perhaps the 
first realistic quantum system (solid) that contains both disorder and order on separate 
length scales. The order lies in the reguIar nano-sized silicon structure that remains after 
anodization and the disorder originates in its shape and size distribution. Over the past two 
years there has been an extensive theoretical investigation on the electronic properties of 
quantum wires and crystallites;  the^ average over differing crystallite sizes, reflecting the 
measurable properties of porous silicon. 

In the present paper we concentrate on the optical absorption coefficient for ptype 
porous silicon. Sagnes et al [6] have undertaken a thorough investigation of the optical 
absorption coefficient for ptype and p+-type porous silicon. Via optical transmission data, 
they provided detailed structure near the (blue-shifted) hand edge for a number of different 
porosities and deduce a number of properties such as crystallite distribution and the effect 
of p-type doping. 
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Unnoticed by them, a clear power law for the band-edge absorption emerges, quite 
different from that associated with the usual bulk indirect and direct absorption mechanisms. 
Within this conventional framework, the data of Sagnes suggest (albeit tenuously) that the 
absorption mechanism may be more closely related to the ‘forbidden (phonon-assisted) 
indirect’ process (corresponding to a cube law for the absorption coefficient with respect 
to incident photon energy). This, however, must be precluded due to its extremely low 
quantum efficiency. We are therefore motivated to investigate the effect that disorder has 
on the band-edge absorption of porous silicon since an uncommon power law suggests that 
the effective density of states for porous silicon differs from the usual square root form of 
simple three-dimensional systems. 

Sagnes comment that the absorption curves can be interpreted either in terms of a band- 
gap distribution or in terms of a roughly single large band gap that is ‘smeared‘ out by a 
‘large defect concentration in the gap’. We shall mainly consider the former in this paper. 

In section 2 of this paper we first discuss the fundamental physics of the optical 
absorption process for a single crystallite. Using this, we derive the relation between 
the optical absorption coefficient of porous silicon and its averaged conduction density of 
states near the band edge. The latter we shall assume to be an average over the relevant 
(confinement) lengths of the crystallites that constitute porous silicon or equivalently, an 
average over a band-gap distribution; there being a one-to-one correspondence between the 
two. This definition is not unique however. If the picture of defect concentration in the gap 
is used, then we should define this as an average over defects. Nevertheless by postulating a 
quadratic law for the averaged density of states in section 3, we find excellent agreement with 
the optical absorption data of Sagnes et al. In section 4 we seek an explanation for the origin 
of the quadratic density of states postulate. The picture we explore is phenomenological in 
that, via a plausibility argument incorporating aspects of percolation theory, we infer a direct 
relationship between the averaged density of states and the confinement len$h (band-gap) 
distribution function. Such a picture obviously requires further experimental verification by 
studying particle size distribution using, for example, a scanning electron microscope. If 
correct, then this aspect of the band-edge behaviour of porous silicon is basically a result 
of the anodization (electrochemical) process. On the other hand, if incorrect, the quadratic 
power law in the density of states may indeed be fundamental to the physics of porous 
silicon and hence of deeper significance. These matters will be discussed in section 5. 

2. An optical absorption model for porous silicon 

To obtain the absorption coefficient for a particular crystallite as a function of incident 
photon energy, sophisticated silicon cluster calculations are needed. We, however, are 
only interested in its form near the band edge. Fortunately this considerably simplifies the 
calculation by an effective-mass approach which as we shall see, still describes the essential 
physics of the absorption mechanism for both single crystallites and porous silicon up to 
nearly 1 eV beyond the band edge. 

Since porous silicon is structurally sound (i.e. it does not fall apart after anodization) 
there exist extended regions in many directions in addition to the local dominant crystallite. 
This entails a three-dimensional continuum of states with energies above that of the local 
(upshifted) band gap. The resulting local density of states near the new band edge will 
therefore arise from a quasi-three-dimensional system and will not be that different from 
the usual square root law of the three-dimensional continuum. 

Further evidence is suggested by [7, 81, wherein it is inferred via a simple zone-folding 
argument that nano-sized silicon structures are approximately direct-gap semiconductors. 
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Hence, for our purposes, the band structure near the band edge for the j th  crystallite (we 
again emphasize that, by this, we mean a region characterized by a particular confinement 
length) can be adequately constructed from an upside down quadratic valence band 
E,(k) = -hzkz/2m,; and a quadratic conduction band: E,!(k) = hzkz/2m, + E: where E{ 
is the local band gap. The corresponding valence and conduction local density of states are, 
respectively, p,(E) = ( 2 m , / h 2 ) 3 / 2 m / 2 i r 2  and pf(E)  = ( 2 m , / R 2 ) 3 / 2 ~ / 2 i r 2 .  
Thus the valence density of states is the same for all crystallites. Regardless of the model, 
this can be generally justified by assuming~that the core valence electron wavefunctions in 
porous silicon are not significantly altered from that of the bulk-an underlying assumption 
of the recent tight-binding calculation for crystallites and wires. 

For very small (smaller than average) crystallites (typically 2-4 nm) the assumption of 
a continuum of states may be invalid or weakened. Indeed a discrete energy spectrum is 
expected. Such crystallites would not contribute significantly to the band-edge absorption 
because it is the larger than average crystallites (typically 6-10 nm) that dominate the band 
edge. In addition, experiment does not seem to show any discrete structure-although the 
instrumental function of the apparatus may not resolve such structure. 

In addition to the direct-gap nature of the crystallites, the lack of translational invariance 
removes the requirement for momentum conservation, giving an absorption mechanism quite 
different from that of the bulk silicon case. It can be shown (see the appendix) that for 
porous silicon, the optical (band-edge) absorption coefficient is approximated well by 

where 

p,PSQ) = ( 1 / N )  C p i ( E )  (2 )  
j 

is an average of the density of states over N crystallites. Equations (1) and (2) imply that 
the non-local electron density of states that the optical photons ‘see’ is an effective density 
of states which need no longer follow a square root power law. 

The physics of this absorption process is fundamental and generalizes from the optical 
properties of bulk semiconductors 191. What follows is our postulate that p,Ps(E) has the 
quadratic form pES(E)  - ( E  - where Ep is the band gap of porous silicon. In the 
next section we shall show that it gives nearly perfect agreement with the absorption data 
of Sagnes et a1 which follows a power law of exponent 112 in the  absorption^ coefficient, 
unnoticed by these authors. 

3. Comparison with optical absorption data 

We now have an approximate relationship between the band-edge absorption curve and the 
conduction electron density of states. Through the experimental data of Sagnes, we have 
available to us an empirical base from which to determine the power law for the optical 
absorption. However, it is more instructive to consider a possible form for the effective 
density of states for the conduction electrons. 

It is a general feature of the electronic density of states that for disordered or amorphous 
systems, tails occur at the band edge. This may either arise from topological or interstitial 
(doping) disorder. It is therefore not too bold to expect a similar band-tail phenomenon for 
porous silicon. For simplicity (justified in section 4). we assume the band-edge conduction 
density of states is described by a power law with an exponent greater than one. 
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Without detailed knowledge gained through experiment it is difficult to go further in the 
determination of the exponent. However, if we hegin with the postulate that the average 
density of states follows a quadratic power law at the band edge, we then obtain (using 
equation (1)) a 7/2-power law for the band-edge absorption: 

We have found that the 7/2-power law generally provided the best fit to the raw data at 
hand. Of course, the other avenue is to keep the exponent free and determine it from the 
best fit (as we have indeed done for a'number of samples). By removing certain anomalies 
(to be discussed at the end of this section) we found that the fitted value of the exponent 
differed by no more than 10 to 20%. However, often the resulting band gap was less than 
that of bulk silicon! We believe it is more productive to begin analyses from the former 
point of view and assume a quadratic density of states since it provides a starting point for 
our discussion. and understanding. 

Exp. Data (Sagnes et al) 
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Figure 1. The optical absorption data measured by Sagnes et al [6] for p-type porous silicon 
with a porosity of 74% together with a fit to the 7B-power law. The noise in the experimental 
data below 1.6 eV made it difficult to obtain a unique fit (in term of band gap) which could be 
maintained for different sample regions of the dxta. 

The absorption data of Sagnes clearly indicate a power law which at first glance extends 
almost one electron volt above the band gap of their porous silicon sample. Figures 1 (a 
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porosity of 74%) and 2 (a porosity of 58%) are reproductions of their absorption data (s versus fiw) for p-type porous silicon obtained from transmission data and corrected 
for porosity. That is, the experimental absorption coefficient for porous silicon, UPS, is 
determined from the equation T = Toexp(-rupsd(l - P)) where (T) is the incident 
(transmitted) photon intensity, d the thickness of the porous silicon sample, and P its 
porosity. Also included in these figures is a numerical least-squares fit of the data to the 
7/2-power law (the fit is in fact to a 7/4-power law due to the vertical axis k ing  &&) 
where the initial free parameters are the band gap and the proportionality constant. For both 
figures the fit is performed using firstly all the absorption data and secondly only the data 
for photon energies of up to 1.8 eV. The latter is perhaps more relevant because we expect 
a (single) power law to hold only near the band edge. 

However, inspection of figures 1 and 2 reveals that the 7/2-power law fits remarkably 
well for the complete range. This may be due to a feature observed in the appendix 
(using the results of [ IOJt tha t  the absorption coefficient for an individual crystallite, 
(.~(fio)-~(fio - .E#) seems to be valid for photon energies up to 2.4 eV; i.e. up to 0.8 eV 
past the onset of absorption. We defer further discussion of this to section 5 .  

The absorption data for p+ (heavily doped) porous silicon are shown in figures 3 and 
4. The power law and band gap for this type of porous silicon are not that different from 
those for bulk silicon, which follows a linear absorption edge due to the dominant ‘allowed 
indirect’ absorption mechanism. This is expected as electron microscopy measurements 
made by Sagnes indicate that for p+ porous silicon, the typical crystallite size is up to 
20 nm whereas for p-type porous silicon, they found that the typical size was mainly less 
than 4 nm. 

For p+ porous silicon with a porosity of 79% an adequate fit of the absorption data to 
the 7/2-power law could not be found (figure 3). On the other hand leaving the exponent 
as a free parameter for the least-squares fitting procedure gave a 1.185-power law with an 
associated band gap of 1.209 eV. For the p+ sample with a porosity of 45%, a reasonable 
fit to the 7/2-power law was found, however with a band gap of 0.9935 eV-less than 
that of the bulk. A better fit was obtained by adjusting the exponent to 1.522 giving a 
corresponding band gap which was now slightly larger than 1 eV. 

Given that the typical confinement length is so large, the applicability of our model to 
p+ porous silicon must be questioned. Specifically, the strict application of the zone-folding 
argument may be inappropriate for such confinement lengths. Instead p+-type porous silicon 
may be more like an indirect-band-gap semiconductor giving a square power law near the 
band edge for the absorption coefficient which corresponds to a linear power law for the 
method of display in figures I to 5. For p+ porous silicon with a porosity of 78% this was 
found, the absorption curve being almost linear (figure 3). 

Hybertsen [ I l l  and Xie et a1 [12] have undertaken an extensive theoretical and 
experimental investigation of the absorption of porous silicon films. For their experimental 
absorption data they obtain a good exponential fit to aps versus ho beginning at a photon 
energy of approximately 1.6 eV and’including energies up to 2.8 eV. At first sight, 
comparison firstly with Sagnes absorption data and then ow model remains difficult due 
to an exponential fit not having a definable (physical) band gap. If we replot their data as 
f i  versus i o  (figure 5), inspectionof their absorption data reveals that a 7/2-power law 
fits reasonably well and therefore their data actually are in agreement with our model. 

An additional trend that has been observed in the absorption data of both [6] and [12] 
for the highly porous samples is a small anomaly at the band edge. This small ‘bump’ can 
be seen in figure 3 (p+-type with porosity 78%), to a lesser extent in figure 2 (p-type with 
porosity 58%), and also in figure 5 (p-type with porosity 73%). If we ignore instrumental 
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Figure 2. The optical absorption data measured by Sagnes et a1 161 for p-type porous silicon 
with a porosity of 58% together with a fit to the 7D-power law. When the fitting was performed 
without the first two data points (see inset) a 712-power law was easily fitted giving roughly the 
same fitting parameters (band gaps) for different sample regions of the data. The better fit (than 
figure 1) may be due to porosities in this range having larger (-than-average) crystallite sizes 
that are more appropriately suited to the approximations contained in our model. 

error (we currently do not have such knowledge) this may be the signature of either a defect 
or surface state(s) of porous silicon. If it were surface states they would arise due to the 
macroscopic surface of porous silicon rather than say the microscopic surfaces of individual 
crystallites. .the latter being smeared out due to the band-gap distribution. 

4. Confinement Iength and band-gap distribution functions 

Our present aim is to determine the properties of the crystallite distribution function that 
would account for the observed optical absorption data according to our viewpoint of a 
band-gap distribution, and thus to explain phenomenologically the origin of the quadratic 
density-of-states postulate. 

If we consider any small region in porous silicon of dimensions in the tens of nanometres 
range, there will exist an average minimum length R which characterizes the local dominant 
crystalline structure. This may be the average cross-sectional length of a quantum wire or the 
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Exp. Data (Sagnes et al) 
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Figure 3. The optical absorption data measured by Sagnes er 01 [6] for p+-type porous silicon 
with a porosiq of 79%. A fit b the liZ-power law could not be obtained at ail. The data did, 
however, fit well with an exponent of 1.185, indicating that for this sample the absorption curve 
was more linear like that of an indirect-gap semiconductor. Again the small anomaly (see inset) 
at the band edge was not included in the data fit. 

diameter of a dominant roughly spherical crystallite. Such small lengths lead to a quantum 
confinement effect where the zero-point energy of the conduction electrons is shifted up 
from the bulk silicon conduction band minima resulting in a larger band gap. From simple 
effective-mass'theory this energy shift will go as l /RZ. If the silicon band structureiis taken 
into account (via the tight binding or linear combination of atomic orbitals framework; 1131, 
[7] and [lo]) the energy shift~is found to obey the more general power law I/Ra for radii 
in the nanometre range. Here a can range between 1.2 and 1.8 [13;10] depending on the 
precise geometry of the structure. Through out the present work we use the term crystallite 
to represent the local dominant crystalline shape with confinement length R; i.e. we do not 

We begin with F(R)  which represents the ratio between the number of crystallites per 
unit volume per unit confinement length and the total number of crystallites per unit volume, 
deriving the associated band-gap distribution using the relationship between confinement 
length and band gap. Since we 'wish to investigate the band-edge region of the optical 
absorption spectra, only the distribution of crystallites with smaller than average band gaps 

assume a specific cjstalline shape for the microstructure of porous silicon. , .  
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Exp. Data (Sagnes et  01) 
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Figure 4. The optical absorption data measured by Sagnes et d 161 for pt-typ porous silicon 
with a porosity of 45% together with a fit to the 712-power law and also a fit where the exponent 
is left as a free parameter. 

is needed. This corresponds to a knowledge of F(R) for large R-considerably simplifying 
the problem at hand. 

To gain an insight into F ( R )  we begin with the very simplistic assumption that the 
anodization process can be viewed as a percolation problem-the action of etching represents 
the random removal of silicon atoms, where the probability that an atom is removed from 
a given site is defined to equal p. For an infinitely large system there exists a critical 
probability pc below which the voids (due to the removal of atoms) form finite-sized clusters 
and above which there exists at least one void that extends throughout the system. The 
function F ( R )  will be associated with the remaining silicon structure. 

For our purposes it is advantageous to begin our plausibility argument for F(R)  from 
a different (yet at this level of approximation, equivalent) percolation scenario. Here we 
start with an empty silicon lattice and randomly add atoms to it. In this case pc  would 
correspond to the critical state where there exists at least one silicon cluster of infinite size, 
extending throughout the system. Such a (single) cluster constitutes the majority of the 
porous silicon and the characteristic confinement lengths would arise from the distances 
between voids within this cluster. The morphology of such a cluster is in general a (finite) 
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a Exp. Data (Xie e t  al) 
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Figure 5. The optical absorption data measured by Xie et a1 [I21 for p-type porous silic?n with 
a poroSity~of 79% togethez with a fit (ignoring the anomaly) to the 712-pwa law. 

fractal and therefore approximately self-similar-it is well known that at least in terms of 
surface, porous structures are fractal like [14]. It is from this perspective that we begin 
with the proposition that asymptotically, F(R)  follows a simple power law behaviour; 
F ( R )  - l / R f l ,  where p is an exponent yet to be determined. This is not an unusual 
assumption since a power law generally arises Ykom self-similar structures. 

In reality the actual formation of porous silicon is far more complex and less random 
than a simple percolation process, the etching beginning at the surface of the silicon subshate 
and being guided (it h e  been proposed) by the chemical passivation of the newly created 
surfaces [I51 and/or the inhomogeneous resistivity/electric field of the remaining cjstalline 
structure [l,  231-both of which would control the duection of the local anodization current. 
This is the realm of the interacting percolation problem and hence it becomes very difficult 
to analyse qualitatively. For example there may no longer be a simple relationship between 
a percolation threshold and the porosity of the system. Nevertheless, for simplicity we still 
assume F ( R )  - 1/RB for large R, although now this may  be^ regarded as iln approximate 
power law. 

In addition, scanning electron microscope analyses of porous silicon reveal a crystallite 
size distribution which appears to be confined to the nanometre range [2,6,17, 181 indicating 
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a (sample-dependent) maximum crystallite size. This is to be expected due to the general 
uniformity above the nanometre scale of the inhomogeneities of the pre-anodized bulk 
silicon surface. Such inhomogeneities are the catalysts for the chemical dissolution process 
[I ,  231 and in part determine the maximum possible crystallite size-given that the growing 
pores (at least in p-type porous silicon) are generally interconnected. Such a maximum 
confinement length R,, corresponds to a minimum band gap E? larger than that of the 
bulk silicon band gap Ep. 

To incorporate this into F ( R )  we modify the 1/RB power law (which we now re-label 
as F,(R)) by the additional factor F,(R, R,=) which is zero for R 2 R,, and has the 
limiting property F,(R, R,, --f 00) + 1 for R c R-. The most general continuous 
function that has these properties is 
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for R c R,,, and 

Fc(R, Rmd = 0 ~ (5) 
for R 2 R,,,,. Thus we have F(R)  - F,(R)F,(R, RW). where 

Such a function occurs widely in physics when a finite. measurable quantity is defined 
only with in an interval of an otherwise unbounded parameter. This is the simplest possible 
choice containing within it the explicit property that porous silicon has a band gap greater 
than that of bulk silicon. In reality there may exist an asymptotic ‘tail’ in the confinement 
length distribution function entailing that the increased band gap in porous silicon is only 
an approximate statement valid above a minimum optical transmission threshold. 

The distribution of confinement len$hs, F(R) ,  defines a distribution of crystallite band 
gaps. Using E, = EPIk + l/R‘ where Eb”Ik is the band gap of bulk silicon (the numerator 
of the second term is set to unity for convenience-generally it depends weakly on the 
geometrical properties of the quantum-sized object), we have R = (Eg - Epk)-’lu and 
dR = -(E, - EY)(a+” /udEg /~ .  In the same way, we can relate R,, to E? using 
ET = EFk,+ l/Rz=. We obtain for R c R,, and Eg z E$” 

-1 -(a+l)/cz (8-WP 
F(R)dR = - 01 (E, - Ep”””) (Eg - E F )  

where’G(Eg) is the distribution function for band gaps used in the appendix. Since we 
assume a minimum band gap larger than that of the bulk, we choose G ( E g )  to be zero for 
K g  < E T . ,  In its present form G(E,) depends on the bulk band gap, an undesirable feature 
since within our model the bulk silicon band gap should no longer be a parameter of porous 
silicon. By requiring that G(E,) be independent of EPik immediately implies 

and 
Y - = 1  
01 
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giving 
1 l Y  F ( R ) - -  

Re+’ (j‘ R;,) 
and 

(11) 
for the confinement length and band-gap distribution functions. 

Although the @-coefficient (and hence the power law for large confinement lengths) 
no longer appears explicitly in equations (10) and (ll),  it does play a role implicitly by 
allowing the parameter v to be regarded as free via equation (8). 

In section 2 (and in the appendix) we assumed that the local density of states 
could still be represented by a square root power law. This approximation can now be 
made more rigorous by exploiting the mapping of the diffusion equation on a depleted 
silicon lattice (such as that produced by the percolation process) to the tight-binding (for 
example) Schrodinger equation. Alexander and Orbach 1191 have determined the average 
autocorrelation function (Po(t)) (single-site Green’s function) for large times for a giheral 
system with fractal dimensionality d and anomalous diffusion coefficient 6, where the latter 
is defined through the large-time mean squared ‘distance power law (rz( t ) )a/z  a tZ/(’+’). 
They find that (Po(t))  a [V(t ) ] - ’  o( (rZ(t))d/2 o( t-d/(2+’). The density of statis for 
the diffusion  problem^ is then N ( E )  = -Im(&-E t io+)) where is the Laplace 
transform of Po(t). The resulting density of states for the diffusion problem becomes - Ed/(2+s)-1 which maps directly onto the conduction-band-edge local density of states, 
giving - (E - Eg)d/(Z+d)-l; where E, is the local band gap. 

Thus from a knowledge of the dimensionality of the porous silicon lattice and the 
anomalous diffusion properties, the local band-edge density of.’states of interconnected 
crystallite structures can be found. Experimental investigation on the fractal dimension of 
porous silicon are rare; however, it is expected that its dimensionality would be slightly 
less than three. For a random walk on porous silicon, the porous regions would hinder 
the particles walk and therefore slow it down indicating that 6 may be larger than zero. 
However, because there exist regions of order, S will not be that different fro” zero. It 
is thus very plausible that as a first approximation, the local conduction density of states 
follows the usual square root power law at the local band edge defined by the local band 

Using equations (1 1) and (A7) immediately imply that the conduction density of states 

mi” Y 

I 

WE,) (E, - E, ) 

. 

gap. 

follows the power law: 
E 

p:‘(E) - lm,” -(E, - ET)” dE . - ( E  - Egmio)3’Z+”. (12) 

and that a power law (using equation (1)) also emerges for the absorption coefficient of 
porous silicon, 

P 

. .  
mi“ 3+” -(E +.Am - E,)3’2+” dE - - 1 @ U -  E ,  ) . . (13) 

Aw 

We now have a relation (via equation (12)) between the average density of states of 
porous.silicon and the confinement length distribution function for large R or equivalently 
the band-gap distribution function  for small E,. Our assumption of a quadratic density of 
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states entails that the exponent U is to equal 1/2 thus giving a square root power law for 
the (smaller than average) band-gap distribution function. The vindication of the present 
phenomenological model thus lies in the experimental verification of equation (10) with 
U = 1/2, and a suitable choice of 01. 

From the present perspective a number of comments can now be made regarding the 
data of Sagnes. The observation (for p-type porous silicon) that the absorption power 
law is approximately the same for different porosities reflects that the precise form of the 
crystallite distribution is not strongly related to the porosity. However, since the band gap 
increases as the porosity increases (the least-squares fitting procedure gives a band gap equal 
to 1.27-1.326 eV for a porosity of 74% (figure 1) and a band gap equal to 1.20-1.22 eV 
for a porosity of 58% (figure 2)), the confinement length distribution ( F ( R ) )  does shift 
as a whole towards smaller lengths. This is in agreement with the statement by [6] that 
for p-type porous silicon, "the increasing porosities are obtained by a successive 'chemical 
peeling' of the less porous structure". 

In the case of p+ porous silicon (specifically figure 4), a 712-power law could not be 
obtained. A better fit was obtained by allowing the exponent to be free, giving a value 
which was less than 7/2's. Such a power law entails U < 1/2 which would imply a 
broader distribution of band gaps and hence confinement lengths. This is in agreement 
with gas adsorption isotherm experiments 161 which demonstrated that for a given substrate 
doping the average pore size increases and the pore distribution broadens entailing far fewer 
crystallites per unit volume. 

3. Discussion and concluding remarks 

We have found that the experimental optical absorption data of Sagnes support an 
approximate 712-power law and this in turn supports our postulate that the band-edge 
conduction density of states is approximately quadratic-an assertion that cannot yet be 
rigorously justified. However, using a phenomenological model we have related the 
quadratic density of states to the larger-than-average crystallite distribution function-an 
experimentally obtainable quantity. 

In the context of our model the 7Q-power law dependence of the band-edge optical 
absorption requires an approximate square root form at the onset of the band-gap distribution, 
i.e. at E,"". If we assume the band-gap shift goes as l/R' where we take 01 = 1.4 [IO], 
then with U = 1/2, we have (using equation (10)) 
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. I ,  

Equation (14) is valid only for large R as our simple model can provide no information 
on the distribution for small (defined to be near and below the average crystallite size) R. 
However, the success of the model up to nearly an electron volt beyond the band edge 
suggests that this form for F ( R )  is maintained into the region where the mean confinement 
length is located, suggesting that, in general, the complete confinement length distribution 
(whatever it may be) is skewed towards larger confinement lengths, having the approximate 
form I / R ~ . '  in the large-R regime. 

Although in our model we cannot make any absolute conclusions about F ( R )  for 
small R, a simple skewed Gaussian would fall off much too quickly with respect to the 
location of its mean, whereas a log-normal distribution would fall off too slowly (which 
is always slower than l/R). Furthermore, to incorporate a maximum confinement length 
(or equivalently a minimum band gap larger than that of the bulk case) simply into such 
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distributions presents difficulties that cannot be easily and justifiably resolved given the 
available information of the system. 

Nevertheless, we again emphasize that our power law is at this stage approximate and 
we cannot completely discount any such distribution of radii and hence band gaps. One 
must be careful in dismissing a particular model for crystal dissolution when comparing 
the associated predictions~ with an experimental form of F ( R ) ;  for example, fragmentation 
models [ZO] which in general incorporate some aspects of percolation theory often predict 
log-normal distributions for cluster sizes. However, in fragmentation theory as in 
percolation theory, cluster size generally is defined as the number of sites (atom, molecules 
etc) that belong to that cluster, whereas the distribution for confinement lengths is derived 
from the internal structure of a particular cluster that extends through out the system; i.e. it 
becomes dependent on the degree of ramification, degree of Self+imilarity, and generally 
the nature of what is often referred to as the ‘swiss cheese’ model (the cheese constituting 
the remaining silicon) [Zl]. 

The issue of percolation also  raises the~possibility that the assumption that the 
measurable optical absorption is due to the average of the crystallites absorption coefficient 
is no longer valid. There may indeed exist a critical percolation state in which the ‘typical‘ 
crystallite size diverges and an  appropriate^ scaling procedure may be needed to describe 
the observed absorption accurately (as in the case for the metal-insulator transition in thin 
porous gold films [ZZ]). Such a critical state will be characterized by the porosity, doping 
level and type, and detected by anomalous absorption data. This again suggests that a more 
detailed analysis is warranted. 

The approximate square root power law for the band-gap distribution and its applicability 
up to nearly an electron volt beyond the band edge suggests that the true distribution is 
much broader than previously thought. The implications of such a broad distribution on 
the photoluminescence spectrum needs to be investigated since there is a belief that the~full 
width at half-maximum of the peak is too lage to be attributed entirely to a distribution 
of crystallite sizes [16] (this issue has also been disputed [24]). A detailed investigation 
of the photoluminescence properties using the present confinement length distributions is 
currently being undertaken and will be published in a subsequent paper. 

A more direct experimental investigation is needed of the larger-than-average crystalline 
structure in p-type porous silicon to,substantiate our model. We propose a systematic 
study of the microstructure as a function of porosity, doping level and type using scanning 
electron microscopy pictures in conjunction with image analysis software to characterize 
the nano-sized crystalline structure more accurately. In parallel, detailed optical absorption 
experiments are needed to investigate more closely the dependence of the absorption power 
law on these factors, and, we hope, to correlate our predictions with the micro-structural 
investigations. Also a more accurate investigation of optical absorption close to the vicinity 
of the band edge is required to verify the precise structure and origin of the anomaly we 
have cautiously attributed to either a defect or surface state(s). 

If such an investigation verifies OUT phenomenological model, then the characteristics 
of the optical absorption process of porous silicon are due to a specific morphology which 
arises from the anodization process. If, however, experiment reveals a confinement length 
distribution which is quite different and more varied than that suggested by our model, 
the quadratic conduction density of states may arise from a more fundamental physical 
phenomena specific to porous silicon in which the local density of states is no longer quasi- 
three-dimensional-no longer a square root power law-an underlying assumption of our 
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modelt. 
In conclusion we have proposed a simple model for the optical absorption coeflicient 

of p-type porous silicon which provides a direct link to the average conduction density 
of states of porous silicon. By postulating a quadratic form at the band edge, excellent 
agreement is found using the optical absorption data provided by [6]. A phenomenological 
model is then used to relate the quadratic density of states to a confinement length (band- 
gap) distribution function, the consequences of which, are in general agreement with the 
conclusions of Sagnes et al. 
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Appendix. Derivation of the optical absorption coefficient for porous silicon 

Without the dynamical aspects of quantum confinement, the zonefolding argument implies 
that the dominant absorption mechanism at the band edge would be ‘allowed direct’ as in 
GaAs. That is, 

where we have assumed that the magix element is independent of the initial and final 
momentum near the band edge; i.e. lM&J2 = IM’IZ. However, with quantum confinkment 
the wave-vector is no longer a good quantum number and therefore is not conserved. As 
a first approximation this can be dealt with by replacing the wave-vector-conserving delta 
function with a function appropriate to the local crystalline shape centred on Ici  - lq ,  namely 
h(kj-kf). For example if we assume the local crystalline shape is rectangular and orientated 
along the wave-vector basis vectors, then h(ki - kf) would be a three-dimensional ‘Sinc’ 
function; 

where L!, L$ and Li are the dimensions of the jth rectangle. In this case the absorption 
coefficient becomes 

where 

t The altemative of the smearing due to defect level wncenuations is also less tenable for it requires, as suggested 
in our study, a specific distribution of defect states-a feature much harder to verify experimentally. 
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contains the angular integration over the modulation function, ki = d m  A d ’  

kr = J-2mC(Ef+ Eo - EL)/fi’. The validity of equations (A3) and (A4) are in fact 
independent of the precise form of h. 

Note that if the dimensions of the crystallite are increased, the bulk absorption coefficient 
is recovered because h limits to a wave-vector-conserving delta function which in turn entails 
X limiting to an energy delta function that restricts the possible transitions to ‘allowed 
direct’. However, the bulk silicon (i.e. ‘allowed indirect’) result cannot be recovered because 
the crystallites are assumed to be direct-gap semiconductors via the zonefolding argument. 

If we (temporarily) assume H(L$,  L$, L:. Ei) depends only weakly on the transition 
energy, the function can be adequately approximated as being independent of Ei and 
thus taken out of the energy integral. With this approximation the bulk result can 
no longer be recovered and the absorption coeffcient for a single crystallite becomes - [E8,,dEipv(Ei)p?(Ei + ho) - (ho)-’(fio - E,)’. This is in agreement with the 
more sophisticated theoretical calculations of [IO] who observe a square power law near 
the band edge for photons up to 2.4 eV for a crystallite with diameter 3.86 nm. 

Despite its agreement with [IO] such an approximation is in fact not correct. If we again 
consider a rectangular crystallite of side lengths 3.86 nm, the difference between the initial 
and final momenta (energy) can correspond to a wavelength of up to %lo nm, indicating 
that the ‘Sinc’ function will vary appreciably over the limits of the energy integration in 
equation (A3). However, by performing this integral numerically we found that the higher- 
order (non-negligible) corrections to our initial approximation roughly cancel out, leaving a 
nearly square power law for the absorption coefficient. This seems to be quite insensitive to 
confinement length and (therefore) crystallite shape. In what follows, we therefore maintain 
the assumption that H ( L i ,  L$,  L:, E ] )  can be taken outside the integral; however, by this 
we mean that the higher-order corrections roughly cancel. 

A slightly different method to our absorption model has been employed by 111, 121 
to determine the dielectric function of crystalline nano-sized silicon structures beginning 
with the bulk silicon Bloch wavefunctions-the ‘envelope approximation’. Here, the 
wavefunction for a ghen band is a weighted sum of all the Bloch wavefunctions of that 
band where the modulation function is similar in form to equation (A2). This has the 
advantage that the bulk silicon absorption coefficient is recovered for large crystallites. We 
need not consider this sophistication because the typical crystallite sizes that we wish to 
consider fall well within the quantum regime-having diameters less than 10 nm-where 
the zone-folding argument is expect to hold. 

For optical absorption the incident photons have a kinetic energy ranging between 1.5 eV 
to 2.0 eV. The resolution of such photons is 500 to 600 nanometres and an effective-medium 
absorption coefficient (the imaginary part of the effective medium dielecuic function) can 
be defined. From basic effective-medium theory it is found that the real and imaginary 
parts of the effective dielectric function are b0th.a function of the real and imaginary parts 
of constituent dielectric functions; that is, they are coupled. Fortunately in the optical 
region for bulk silicon (and therefore for silicon crystallites) the real part is several orders 
of magnitude larger than the imaginary part entailing that the effective imaginary part of 
the dielectric function of porous silicon will be strongly proportional, to the average of the 
imaginary part of the crystallite dielectric functions. 

0 
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Hence optical absorption experiments measure the mean absorption coefficient of 
crystallites: 

where the j-summation is over all crystallites and N is the number of crystallites that we 
consider. Here we have included an additional label for the function H since in general this 
will be strongly dependent on the shape of the crystallite and assume the matrix element 
near the band edge is independent of the specific characteristics of the crystallite. 

Due to the unpredictable local microstructure of porous silicon, the summation 
(average) over crystallites can be replaced by averages over one or more independent 
random variables. Since for a given confinement length (band gap) there exists 
no unique crystallite, 'the quantities H j ( L I ,  Li, L i )  and p,'(E) will be only weakly 
correlated. As a first, approx,imation we assume that they are independent by 
replacing ( I / N )  cj H ~ ( L : ,  L:, L : ) P , ~ ( E )  with ( I / N )  cj H ~ ( L : ,  L ! L ~ ) ( I / N )  cj p j ( ~ ) ,  
and define 

j 

and (where p, (E,  EL) = pd(E) )  

Equation (A?) is thus the average (effective) band-edge conduction density of states for 
porous silicon. The integration limits in equation (A7) assume p, (E,  E,) = 0 for E 6 E,, 
i.e. pps(E)  is constructed from (local) crystallite density of states for which E, < E and 
that there exists a minimum band gap E"" larger than that of the bulk which arises from 
the largest crystallite. Here G ( E , )  is the distribution function for band gaps and is equal 
to the ratio between the number of crystallites per unit volume per unit band gap and the 
total number of crystallites per unit volume. 

g .  

The mean optical absorption coefficient for porous silicon then becomes 

aps - - I M ' *  H -  Ao / p v ( E ) p : s ( E + h o ) d E .  
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