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Abstract

Due to the inherent nature of their heterogeneity, re-

source scarcity and dynamism, the provision of middleware

for future networked embedded environments is a challeng-

ing task. In this paper we present a middleware approach

that addresses these key challenges; we also discuss its ap-

plication in a realistic networked embedded environment.

Our application scenario involves fire management in a

road tunnel that is instrumented with networked sensor and

actuator devices. These devices are able to reconfigure

their behaviour and their information dissemination strate-

gies as they become damaged under emergency conditions,

and firefighters are able to coordinate their operations and

manage sensors and actuators through dynamic reprogram-

ming. Our supporting middleware is based on a two-level

architecture: the foundation is a language-independent,

component-based programming model that is sufficiently

minimal to run on any of the devices typically found in net-

worked embedded environments. Above this is a layer of

software components that offer the necessary middleware

functionality. Rather than providing a monolithic middle-

ware ‘layer’, we separate orthogonal areas of middleware

functionality into self-contained components that can be se-

lectively and individually deployed according to current re-

source constraints and application needs. Crucially, the set

of such components can be updated at runtime to provide

the basis of a highly dynamic and reconfigurable system.

1 Introduction

Future networked embedded infrastructures will have to

support very challenging application scenarios. One such

scenario, quite representative of the field and constituting

the applicative focus of our RUNES (Reconfigurable Ubiq-

uitous Network Embedded Systems) project1, involves a

road tunnel that is instrumented with networked embedded

sensors, actuators, and larger, more powerful, devices. The

latter act as gateways and allow the sensors to report moni-

tored readings both directly to the actuator systems and to a

tunnel control centre. The system allows to detect and react

to emergency situations such as fire or chemical spillage. In

an emergency, firefighters enter the tunnel in groups. As the

situation unfolds, the embedded sensor/actuator network re-

configures itself as devices fail, and devices carried by the

firefighters spontaneously inter-work with each other and

with the embedded devices to provide the firefighters with

appropriate information and command/control capability.

Scenarios such as this are essentially characterised by

heterogeneity, resource scarcity and dynamism. In terms of

heterogeneity, the devices employed range from tiny sen-

sors to controller PCs and the PDA-class devices carried

by the firefighters. These different devices employ a va-

riety of power sources, run different operating systems,

and are programmed in different languages. Furthermore,

they interact using a range of network types including both

wired and wireless networks running in both infrastructure

and ad-hoc modes, and a range of higher-level interaction

paradigms such as messaging, RPC, and publish-subscribe.

Resource scarcity is clearly an issue for many of the de-

vice classes involved. Apart from the obvious issues of

power and CPU speed, memory can be a significant limita-

tion that can severely constrain the ‘intelligence’ of devices

and also limit their capability to buffer messages. Finally,

such scenarios are inherently dynamic due to changing envi-

1http://www.ist-runes.org
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Figure 1. The RUNES software architecture.

ronmental conditions. Obvious examples from our disaster

management scenario are loss of devices due to fire dam-

age; loss of network connectivity; and the need to sponta-

neously create new patterns of connectivity as firefighters

move around the tunnel. Such situations require the sys-

tem to be capable of dynamically reconfiguring itself along

several different dimensions such as reconfiguring the net-

work topology, loading new functionality onto devices, and

offloading functionality as resources dwindle.

In this paper we focus on the provision of middleware

for such scenarios. We first observe that traditional so-

lutions such as CORBA, Jini, .NET etc. are ill-matched

because they lack sufficient support for heterogeneity, re-

source scarcity and dynamism. We therefore take a “clean-

slate” approach in the shape of the architecture shown in

Figure 1. The foundation for the architecture is provided

by a component-based programming model, provided to the

programmer through a middleware kernel API. Since the

model effectively captures the essence of the required func-

tionality in only a handful of concepts, the kernel support-

ing it is simple enough to be easily implementable on any

of the devices typically found in our target scenarios. This

API is then employed to build, at the upper level, a com-

position of middleware and application-level software com-

ponents that offer the necessary middleware and applica-

tion functionality. Rather than providing a monolithic mid-

dleware “layer”, we factor orthogonal areas of middleware

functionality into self-contained components that can be se-

lectively and individually deployed and composed accord-

ing to current resource constraints and application needs.

For example, some devices might require only a basic com-

munication component that provides unreliable messaging,

whereas others might require a more sophisticated publish-

subscribe service that can be realised by composing addi-

tional components on top of the base one. Crucially, the set

of such components can be updated at runtime to provide

the basis of a highly dynamic and reconfigurable system.

The contributions of this paper are as follows:

• a middleware approach that addresses the above-

mentioned concerns of heterogeneity, resource scarcity

and dynamism;

• a concrete implementation of the approach in three

representative deployment environments, viz. Java,

C/Unix, and severely resource-constrained sensor de-

vices running the Contiki [9] operating system;

• an implementation of the disaster management appli-

cation scenario described earlier, which provides a

concrete way to assess the effectiveness of the ap-

proach;

• an experimental, quantitative evaluation of our three

specific implementations showing their ability to ac-

commodate heterogeneity, resource scarcity and dy-

namism with reasonable performance.

The remainder of the paper is structured as follows. First,

we expand in Section 2 on our motivating disaster man-

agement scenario. In Section 3, we outline our component

model, its API, and its deployment in the three different en-

vironments mentioned above. We then, in Section 4, de-

scribe the design of a specific middleware solution for the

disaster management scenario, and in Section 5 we present

our empirical evaluation. Finally, we compare our approach

to related work in Section 6, and offer our conclusions in

Section 7.

2 The Road Tunnel Application Scenario

Over 200 people have died in Europe in road tunnel fires

during the last decade. There is therefore considerable inter-

est in applying technology to improving safety in road tun-

nels. However, as reported in an article on a Berlin tunnel

in Risks Digest getting the technology right is very difficult

and the current state of the art is not very advanced [1].

In our futuristic scenario, we envisage a road tunnel that

is equipped with networked embedded devices that moni-

tor environmental conditions such as temperature, humidity

and air quality, and actuate tunnel safety systems such as

sprinklers, ventilators and road signage. The system also

incorporates larger, more powerful, devices which act as

gateways and allow the sensors to report monitored read-

ings both directly to the actuator systems and to a tunnel

control centre.

When an accident occurs, the system’s first responsibil-

ity is to detect and report the accident and carry out any

automated emergency sequences. In addition, some sen-

sors, actuators or gateways may be damaged and the system

must reconfigure itself to compensate for this. Eventually,

a team of firefighters arrives. We envision the firefighters

equipped with PDA-class networked devices capable of in-

teracting directly with the tunnel system and also carrying
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interface Capsule : {

ComponentType load(in Pattern p);

void unload(in ComponentType t);

Component instantiate(in ComponentType t);

void destroy(in Component c);

Connector connect(in Interface i, in Receptacle r,

in ConnectorFactory cf);

void setAttribute(in Entity e, in Attribute a);

sequence<Attribute> getAttributes(in Entity e,

in Pattern p);

sequence<Entity> getEntities(in Pattern p);

};

Figure 2. The Kernel API.

body sensors to report vital signs to other workers to ensure

that they are rescued when needed. At this point, the tunnel

system plays the role of a tool that can be directly manipu-

lated by the firefighters. For example, it can be selectively

queried by the firefighters to help them operate in the poor

visibility conditions, and the firefighters can directly control

the actuator devices.

In the next two sections we first expand on the funda-

mentals of our middleware approach and then show how

the approach can be used to build an application for the road

tunnel scenario.

3 The RUNES Middleware Foundations

In this section, we first describe our software compo-

nent model and its associated API. As shown in Figure 1,

this API is provided at runtime by the middleware kernel.

We then discuss the middleware kernel implementation for

three very different platforms and briefly comment on com-

ponents we have developed.

3.1 The Middleware Kernel

Our component model2 comprises the following ele-

ments: components, component types, interfaces, recepta-

cles, connectors, connector factories, attributes and cap-

sules. The API associated with the model is defined in

Figure 2 in terms of the OMG’s Interface Definition Lan-

guage (IDL). In addition, the relationships between the var-

ious elements is shown diagrammatically (using UML) in

Figure 3.

In the model, components are the basic runtime units of

encapsulation and deployment. They are instantiated at run-

time from component types, such that each component type

can be used to create multiple component instances at run-

time. This is performed using the instantiate() op-

eration in Figure 2. Components can be deleted as well,

2A preliminary version of the model appeared in [6]. The one pre-

sented here is richer and is furthermore complemented by details on kernel

implementations, on the application scenario, and on evaluation.

using destroy(). Component types can themselves be

dynamically loaded and unloaded at runtime (see load()

and unload()), which provides the basis for the dynamic

nature of our programming model3.

Components offer their functionality through one or

more interfaces each of which is defined in a programming

language independent manner as a set of types and opera-

tion signatures. In addition, components that have depen-

dencies on other components can express these dependen-

cies in terms of one or more receptacles. This capability

is of considerable help when components are dynamically

deployed, as the required deployment environment of the

new component is made clear and explicit. Such a com-

ponent must have each of its receptacles connected (using

connect()) to a corresponding interface on some ex-

ternal component before it can execute. This connection

between a receptacle and an interface is explicitly repre-

sented in the model through a so-called connector, which

is itself a component and therefore can be deleted using

destroy().

The model also incorporates the notion of connector fac-

tories. These are components that create connectors that

embody a specific piece of behaviour to be invoked ev-

ery time a call is made over a given receptacle/interface

connection. In this way, connectors may encapsulate ar-

bitrary functionality and can thus be used to perform such

functions as monitoring or intercepting communications be-

tween their associated receptacle and interface. Connec-

tor factories are passed as arguments to connect(); or,

if a null argument is passed, a “default” connector factory

is used which binds the receptacle directly to the interface.

Note that connector factories are not normally used to ab-

stract over network communications; rather, they are in-

tended for “local” use only. Network communication is as-

sumed to be encapsulated within middleware components

(see Section 4) and is thus transparent to the component

model itself.

All of the foregoing entities (i.e., components, com-

ponent types, interfaces, receptacles, and connectors)

may be annotated with attributes. These are key/value

pairs that can be used to express arbitrary meta-data.

Attributes are managed using setAttribute() and

getAttributes(). Finally, all of the foregoing entities

reside inside a capsule which serves as a runtime compo-

nent container, providing name space functionality. A cap-

sule is typically implemented as an operating system ad-

dress space although this is not mandatory. All the enti-

ties currently inside a capsule can be enumerated using the

getEntities() operation.

It is notable that the component model can be managed

using only eight operations as illustrated in Figure 2. This

3The ‘pattern’ argument to load() is simply a flexible way of speci-

fying a component type.
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Figure 3. The RUNES component model.

enables an easy and lightweight implementation of the ker-

nel mechanisms on a wide range of platforms, as illustrated

next.

3.2 Kernel Implementations

We now describe concisely how the core abstractions de-

fined by our component model are realised in three differ-

ent implementations: (i) a Java-virtual-machine-based im-

plementation; (ii) a C/Unix-based implementation; and (iii)

an implementation based on tiny embedded devices running

the Contiki [9] operating system.

Component Types and Components. In the Java imple-

mentation, component types are straightforwardly repre-

sented as classes that inherit from a specific abstract class.

This approach allows us to “factor out” the code needed

to support component instantiation and destruction. There-

fore, components can be realised simply as objects instan-

tiated from a class representing a component type, and the

load() operation is simply implemented using the default

Java class loader. In the C/Unix implementation compo-

nent types are represented as Unix “shared objects” com-

piled from source files conforming to a specified structure.

The load() operation is implemented in terms of the na-

tive load/link facilities provided by the operating system,

e.g., using dlopen(), and instantiation amounts to allo-

cating a struct containing per-component state. Each in-

terface operation defined in a component type (realised as

a C function) takes as its first argument a pointer to this

per-component struct so that the particular component in-

stance being invoked can be determined. In the Contiki im-

plementation, component types are similarly implemented

as C source files which map to Contiki “services”; and the

Contiki dynamic loading facility is used. Because Con-

tiki supports only a single instance of a given type of “ser-

vice”, the instantiate() operation currently only re-

turns a newly instantiated component once for each com-

ponent type. We are currently looking into removing this

limitation.

Interfaces, Receptacles and Connectors. In the Java envi-

ronment, interfaces are trivially implemented as Java inter-

faces, whereas receptacles are implemented as Java objects.

Component types contain initialisation code to create the

appropriate receptacles at component instantiation time. In

the C/Unix environment both interfaces and receptacles are

represented as C structs. Both contain an array of function

pointers. In the case of an interface, these pointers point at

the target operations (C functions). In the case of a recep-

tacle, they are assigned during connect() either directly

to the function pointer values in the associated interface,

or indirectly via functions within the specified connector

that contains some intermediate functionality. In the Con-

tiki environment, a similar approach is adopted. In the Java

and C/Unix environments we provide the ‘full’ semantics
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Figure 4. A component-based calculator.

import runes.kernel.Interface;

public interface IMultiplier extends Interface {

public int multiply(int x, int y); }

Figure 5. Java kernel: interface for a generic multi-

plier component. Interface is a tagging interface every

RUNES interface must extend.

of connectors, i.e., we provide the ability to employ user-

defined connector factories to customize their behaviors as

described above. Currently we do not provide this function-

ality in the Contiki environment, but there is no a priori rea-

son why the Contiki implementation could not be extended

in this way.

3.3 Using Components: An Example

We have developed a range of application and middle-

ware components on top of the kernel API discussed above.

Some of these are discussed in our previous paper [6]. Here

we describe the implementation of a simple application

to illustrate the use of the abstractions and API described

above.

Our example application consists in a component-based

calculator, designed according to the component configu-

ration shown in Figure 4. The Calculator component of-

fers an interface providing operations to multiply or add

two integers. Each of these operations is implemented by a

dedicated component, connected to the Calculator through

a dedicated connector. At some point, the system recog-

nizes the component initially employed to implement the

add operation as faulty. Therefore, the system dynamically

replaces it with a different Adder component implementing

the same interface.

Developers start writing the interfaces expressing the op-

erations requested/exported by components. For instance,

the Multiplier component relies on a single interface con-

taining an operation to multiply two integers, as illustrated

in Figure 5 using Java. The operation signatures must

then be implemented within the actual components, pos-

sibly along with initialization and destruction routines ex-

ecuted at component instantiation and destruction time, re-

public class Multiplier extends BaseComponent

implements IMultiplier {

public void construct() {

System.out.println("Multiplier instantiated"); }

public void destroy() {

System.out.println("Multiplier destroyed");}

public int multiply(int x, int y) {

return x * y;}

}

Figure 6. Java kernel: implementation of a simple mul-

tiplier component. BaseComponent is an abstract class

every Java component must inherit from.

// Loading and instantiating a Calculator component

ComponentType calcT =

capsule.load("sampleApp.Calculator");

Component calc = capsule.instantiate(calcT);

// Loading and instantiating a (faulty) Adder component

ComponentType adderTFaulty =

capsule.load("sampleApp.FaultyAdder");

Component adder = capsule.instantiate(adderTFaulty);

...

// Retrieve interfaces and receptacles as attributes

Interface adderIf = (Interface) capsule.

getAttribute(adder,"INTERFACE-sampleApp.IAdder");

Receptacle calcAdderRecpt = (Receptacle) capsule.

getAttribute(calc, "RECEPTACLE-sampleApp.IAdder");

...

// Connecting the Calculator to the (faulty) Adder

Connector calcToAdder =

capsule.connect(adderIf, calcAdderRecpt);

Figure 7. Java kernel: instantiating and connecting com-

ponents for the calculator application.

// Loading and instantiating a new Adder component

ComponentType adderTCorrect =

capsule.load("sampleApp.CorrectAdder");

Component adder = capsule.instantiate(adderTCorrect);

// Retrieving the new Adder interface

Interface adderIf = (Interface) capsule.

getAttribute(adder,"INTERFACE-sampleApp.IAdder");

// Destroying the Calculator-FaultyAdder connector

capsule.destroy(calcToAdder);

// Connecting the Calculator to the correct Adder

calcToAdder = capsule.connect(adderIf, calcAdderRecpt);

Figure 8. Java kernel: replacing the adder component in

the calculator application.

spectively. This is illustrated in Figure 6 in the case of the

Multiplier component.

Components are wired together so that the Calculator

exploits the other components to implement its operations.

This wiring is performed using the primitives provided by

the Kernel API, as shown in Figure 7. In our example, this

involves creating various component instances, and con-

necting the Calculator component to a pair of components

implementing the IMultiplier and IAdder interfaces.
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The Kernel API is also used to replace the faulty adder

component with a correct one. This is done by first destroy-

ing the Connector binding the Calculator and the FaultyAd-

der, and then reconnecting the former to a newly instanti-

ated Adder component, as exemplified in Figure 8.

In its simplicity, the above example shows the power and

ease of use of the kernel API. The next section illustrates

how we leveraged off these characteristics to address the

challenges of our reference scenario.

4 The RUNES Middleware in Action

Using our three middleware kernel implementations, we

have developed a set of middleware and application compo-

nents that collectively address the road tunnel disaster man-

agement scenario outlined earlier. The overall design of the

resulting application is depicted in Figure 9.

The application is structured as follows. TMote Sky [23]

nodes running the Contiki-based kernel support a Data Ac-

quisition component and a Data Dissemination component

that together monitor and disseminate environmental condi-

tions in the tunnel. These report, via gateways running the

C/Unix kernel and supporting a Packet Forwarding compo-

nent, to a central control station that includes a Data Log-

ging component running on a PC that runs the Java kernel.

The communication is handled by an underlying µAODV

component which provides multi-hop routing.

When an emergency occurs, the Data Acquisition com-

ponents respond initially by sending readings more fre-

quently. In addition, the µAODV component has the abil-

ity to automatically recover from damage to either sen-

sors or communication paths. Eventually, firefighters arrive

equipped with mobile, wireless devices, forming a mobile

ad-hoc network. The firefighters’ devices instruct the sen-

sors to send their readings direct to the firefighter as well as

to the Data Logger and also a Publish-Subscribe [10] com-

ponent that helps the firefighters coordinate their actions.

The firefighters additionally run a Deployment component

that has the capability to dynamically deploy a Contiki ver-

sion of the Publish-Subscribe component directly onto the

sensor devices so that the latter can start broadcasting di-

rectly to any nearby firefighters who subscribe to relevant

events, e.g., temperature readings above a safety thresh-

old. The Deployment component first checks if the sen-

sors within range already run the Publish-Subscribe com-

ponent. If not, the owning firefighter is prompted about the

possibility of uploading the component on those sensor de-

vices still lacking it. If there is no space on a sensor for the

Publish-Subscribe component, the original Data Dissemi-

nation component can be removed. All of this behaviour is

under the control of the firefighters who interact with their

devices using a GUI component. Table 1 summarises the

configuration of the devices involved as the situation un-

Device Kernel Middleware

Platform Components

Step 1 Sensor Contiki Data Acquisition

Quiescent Data Dissemination

conditions µAODV

Gateway C/Unix Packet Forwarding

Control center C/Unix Data Logging

Step 2 Firefighter Java Publish-Subscribe

Fire detected GUI Component

Step 3 Sensor Contiki Publish-Subscribe

Firefighters Firefighter Java Publish-Subscribe

reconfigure sensors Firefighter Deployment

Table 1. Configuration of the application as the scenario

unfolds.

folds.

The Publish-Subscribe component is the most complex

of the components described above and deserves further ex-

planation. The component employs a layered architecture,

in which two sub-components take care respectively of the

two concerns relevant to dealing with host mobility, i.e.,

overlay maintenance and route reconfiguration on top of

the overlay. The separation of these two concerns is espe-

cially beneficial in allowing independent customisation of

these two aspects. In more detail, the first sub-component

takes care of creating and maintaining a tree-shaped over-

lay based on the algorithm described in [24]. The second

sub-component is then in charge, using the mechanism de-

scribed in [25], of setting up message routes on top of the

overlay, and reconfiguring these routes in case of topology

change.

Note that the application provides a clear illustration

of the benefits of our middleware approach. First, a uni-

fied component-based software development approach is

adopted regardless of the type of device involved. Second,

the component approach encourages the development of in-

dependent pieces of functionality that can be composed in

various useful ways depending on context. Third, the dy-

namic loading capability relaxes the need to anticipate all

the functionality that will be needed on a node. This is espe-

cially beneficial for resource-constrained devices on which

it may not be possible to fit all the components required

at any one time. Fourth, the dynamic (re)connection capa-

bility makes it possible for newly deployed components to

interact in complex ways with the existing components in

a type-safe manner. For example, initially, the Data Acqui-

sition component is bound to the Data Dissemination com-

ponent; however, when the Publish-Subscribe component is

uploaded, it is dynamically rebound to the latter.

5 System Evaluation

This section assesses the effectiveness of our middle-

ware in coping with heterogeneity, resource scarcity and
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Figure 9. Fire in a road tunnel: application design.

dynamism, and also assesses its specific competence for our

reference disaster management scenario.

5.1 Middleware Kernel Evaluation

First we present an evaluation of our three middleware

kernel implementations. For the Java implementation we

used Sun JVM v5.01a running on Linux Gentoo 2006.1 on

a Pentium 4 3.2Ghz with 1 GB RAM. For the C/Unix imple-

mentation we used and 2.4 Ghz P4 running Linux 2.6.12-9-

386; and for the C/Contiki implementation we used TMote

Sky motes [5] with a 250 kbps radio, 10 KB RAM, 48 KB

flash, and 1 MB storage.

Metrics. To demonstrate the ability of the middleware to

support heterogeneity and resource scarcity, we measure the

kernel memory footprint, i.e., the data and code memory

footprint consumed by the run-time support for our compo-

nent model. In addition, to evaluate the memory overhead

required to represent the component, interface and recepta-

cle concepts from the programming model, we measure the

memory footprint of a null component and the per-interface,

per-receptacle memory footprint. A null component is a

component with no interfaces/receptacles and null initiali-

sation/destruction routines.

To investigate the dynamic aspects of the middleware,

we consider the overhead of null operation calls through

a default connector. A null operation is one with no in-

/out parameters performed across a connector without inter-

vention in the control flow, and introduces some overhead

w.r.t. “native” operation calls (e.g., a method invocation in

Java). This measure represents the run-time overhead of in-

troducing connectors in the programming framework. We

also consider the operations needed to dynamically mod-

ify the software running on a node. To that end, the kernel

must load a new component, instantiate it, and connect the

new instance to an existing component. In the case of the

Java and C/Unix kernels, we measured each of these aspects

separately, using a null component. We note that the fine-

grained time aspects cannot be measured on the motes due

to timer service limitations.

Results and Discussion. Our approach addresses hetero-

geneity effectively. This is shown by implementing the

same software component model on a variety of devices,

ranging from powerful desktop PCs to resource-constrained

devices. Different programming languages and concur-

rency models have been used on different platforms. Our

support of heterogeneity is further demonstrated by the rel-

ative sizes of the different middleware kernel implementa-

tions, shown in Table 2. This highlights that our implemen-

tations scale down to severely constrained devices.

Even on the most resource-constrained of our platforms,

the TMote Sky motes, the kernel footprint of 780 bytes is

less than 1% of the total available flash memory of the motes

(48KB internal and 1MB external flash memory). The over-

head due to the introduction of components, interfaces and

receptacles in the programming model of Contiki is negli-
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Performance Measure Java C/Unix C/Contiki

(Memory Footprint)

Kernel Code 14.65 KB 16 KB 780 bytes

Kernel Data 840 bytes 4 KB 52 bytes

Null Component Data 544 bytes 24 bytes 9 bytes

Per-Interface Data 200 bytes 40 bytes 2 bytes

Per-Receptacle Data 264 bytes 22 bytes 2 bytes

Table 2. Memory overhead.

Performance Measure Java C/Unix C/Contiki

Overhead of null Calls

(DefaultConnector) 158.93% 99.84% 137.5%

Component Loading Time 0.0006 ms 0.2116 ms 2.4973 s

Component Instantiation Time 0.0047 ms 0.7674 ms N/A

Table 3. Run-time overhead

gible with respect to the amount of RAM (10KB) available

on the TMote Sky motes onto which they would be loaded.

This minimal overhead obtained is due to the simplicity of

our component model. This enables software reconfigura-

tion through simple, yet powerful, abstractions, that are eas-

ily implementable.

Table 3 reports on the dynamic aspects of our implemen-

tations4. The overhead introduced by null operation calls

through default connectors may appear to be non-negligible

with respect to their “native” equivalents. However, fur-

ther investigation revealed that invoking a void Java method

through a default connector takes only 23.5 µs, on average.

Therefore, the time needed to execute an actual fragment

of code inside the method body would consume the major-

ity of the overall computation time, making the overhead of

the connector negligible. Similar considerations apply for

the C/Unix and the Contiki implementations.

The remaining data in the same table refers to the op-

erations needed to change the software running on a node.

Among these operations, component loading and instantia-

tion are the most expensive, because of the work involved

in transferring the component and creating data structures

within the middleware kernel. Given the values obtained,

and also considering that such operations should be trig-

gered only when needed, we argue our kernel implemen-

tations are able to adapt sufficiently quickly to a changing

environment.

5.2 Scenario-Based Evaluation

We now provide a basic evaluation of aspects of the road

tunnel scenario reported in Section 4. These measurements

were made on an experimental set-up consisting of a TMote

Sky node representing a sensor device in the tunnel, and two

laptops representing firefighter devices. More precisely, the

firefighter devices each comprise a laptop plus a TMote Sky

4We executed 10,000 iterations and averaged the results.

Performance Data Data Publish-

Measure Acquisition Dissemination Subscribe

Source Lines of Code 287 lines 181 lines 197 lines

Memory Footprint 1462 bytes 738 bytes 772 bytes

Table 4. Application component size.

node attached to the laptop via a USB cable; the TMote

Sky node simply forwards IP packets from the firefighter

laptop to the tunnel sensor and vice versa. The sensor device

runs the Contiki implementation of our middleware kernel,

whereas the firefighter devices run the Java version.

First, we evaluated the sizes of some of the components

running on the sensor device. The results in Table 4 show

that these are negligible compared to the available resources

of the TMote Sky motes. By adding together the footprints

of the components and the middleware kernel, we see that

the size of the sensor node installation is 3750 bytes. This is

still less than 1% of the total memory available on a TMote

Sky mote.

We also measured the lines-of-code and memory over-

head for the Java Publish-Subscribe component on the

firefighter devices. This amounts to 1327 lines of non-

commented code, and occupies 8.23 KB of memory. Again,

a very acceptable overhead.

Finally, we carried out some basic performance mea-

sures to confirm that the network overheads are sufficiently

small for run-time reconfiguration to be feasible. To this

end, we measured 2.07 seconds to deploy a null compo-

nent onto the sensor device; 61.52 ms for an ICMP round-

trip ping between the sensor device and a firefighter device;

and 4.25 ms for a Publish-Subscribe message sent between

firefighter devices. These figures indicate that the network

overheads are indeed acceptable.

6 Related Work

There is a substantial body of literature on reconfigurable

middleware systems. First, the RUNES middleware builds

on our earlier work on the OpenCOM component model [7].

Compared to this earlier work, our middleware exhibits a

richer and more coherent set of features, a sounder concep-

tual basis provided by the model we outlined in Section 3,

and a more marked slant towards the requirements of net-

worked embedded systems.

Other relevant component models exist. Gravity [4] is a

component model built on top of the Open Services Gate-

way Initiative (OSGi) Framework [28]. P2PComp [12] is

a lightweight service-oriented component model for mobile

devices which is also built using OSGi; it provides location

independent synchronous and asynchronous communica-

tion between components. The Dynamically Programmable

and Reconfigurable Software (DPRS) architecture [26] is
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a component-based design for dynamically programmable

and reconfigurable systems. PCOM [2] is a distributed com-

ponent model for pervasive computing. It allows for de-

signing applications as a collection of potentially distributed

components, which make their dependencies explicit. If

those dependencies are invalidated, PCOM can attempt to

automatically adapt by detecting alternatives according to

various strategies. FarGo-DA [30] is a distributed compo-

nent model that uses logical mobility to allow disconnected

operation. The Software Dock [14] is an agent-based soft-

ware deployment network that allows negotiation between

software producers and consumers. THINK [11] presents

an approach for building component-based operating sys-

tem kernels. And finally, one.world [13] is a system for

pervasive applications that supports dynamic service com-

position, migration of applications and discovery of context.

Other component based systems are targeted specifically

at embedded systems. These include Pebble [21], PECOS

[31], PBO [27], SaveCCM [15] and Koala [29]. Most

of these are build-time only technologies—components are

not visible at run-time and therefore these systems do not

support dynamic reconfiguration, as we do. A further obser-

vation is that many of these embedded systems technologies

(e.g., PBO, SaveCCM, and Koala) are tightly coupled to a

specific underlying operating system and/or are program-

ming language specific.

Existing middleware for WSNs (e.g., [16, 17, 20])

mostly addresses homogeneous systems and targets appli-

cations such as data collection and analysis. Therefore, it

is unsuited to control applications like the ones we consider

here, in which heterogeneous devices are deployed, and the

system not only observes the environment, but also acts on

it. Impala [19] is one system that does provide hooks for

sensor actuation as a result of data sensing, but it targets ho-

mogeneous systems and does not provide a framework that

can be used to develop components on multiple platforms.

Similarly, most existing mechanisms for code deployment

in WSNs (e.g., [18, 22]) cannot be used in our context, as

they assume a single hardware platform, and are geared to

distributing code to the whole system. Moreover, some of

them do not even provide fine-grained control over the unit

of deployment. For instance, [18] basically replaces the

whole binary running on a node. Instead, our component

model enables greater control over the unit of code distribu-

tion, ultimately achieving more efficient code deployment

in terms of network load.

Finally, in terms of application scenarios, a number of

middlewares targeting disaster, medical and emergency ser-

vices have started to appear [8, 3]. However, we have

not yet seen efforts offering a unique solution tackling the

different requirements of heterogeneity, dynamism and re-

source variability.

In summary, there are two main differences between the

approaches outlined above and our work. The first differ-

ence relates to generality: RUNES is a generic software

fabric that is designed from the ground up to be imple-

mentable on a wide range of devices, and to allow the im-

plementation of a large number of very different primitives.

This is an essential requirement of pervasive applications

such as disaster management. The second difference relates

to our two-layer architecture in which systems are built by

selecting (and dynamically reconfiguring) appropriate mid-

dleware and application components on top of the middle-

ware kernel. This capability, lacking in other works, results

in significantly greater flexibility than current systems offer.

7 Conclusions

In this paper we have described our approach to the

provision of middleware for networked embedded environ-

ments and have demonstrated its application in a road tunnel

disaster management scenario. We have shown in particular

how our component model and its implementation provides

a unified programming model over a wide range of devices

including very small ones. Furthermore, the application of

our approach in the highly heterogeneous road tunnel sce-

nario has proved to be straightforward and to have low re-

source overhead.

As part of future work we will look into implementations

of the middleware more tightly coupled with the operating

system, into delivery of security properties and particularly

access control, and into more sophisticated mechanisms for

code deployment.

The middleware implementation is publicly available at

http://www.ist-runes.org/middleware.
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