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Abstract

The study of the interaction of positrons with atoms and molecules has become increas-

ingly popular, because more and more experimental activities have become feasible.

Although exchange effects are absent, the polarisation effects, caused by the attrac-

tive nature between the positron and the target electrons, make the positron-molecule

collisions more difficult to handle than the corresponding electron collisions.

This thesis gives the calculations of positron collisions with polar molecule H2O

and non-polar molecules, H2 and C2H2 at energies below the positronium formation

threshold. All calculations were carried out using the modified version of the UK

molecular R-matrix code. Due to the large permanent dipolar nature of water molecule,

the three models tested give very similar results. However, for positron collision with

non-polar molecules, the polarisation effects can be very important in the calculation.

The molecular R-matrix with pseudostates (MRMPS) method has been employed to

analyse the positron collision with non-polar molecules, and found to lead to an excellent

representation of target polarisation.

C2H2 is the simplest molecule that has very enhanced annihilation parameter Zeff ,

which can be determined by the total scattering wavefunction. So a new sub-code

was developed for calculating Zeff based on the UK R-matrix polyatomic code and

employed to treat positron collisions with H atom, H2 and C2H2 molecules. It has

been found that Zeff values are also sensitive to the degree of polarisation included in

calculations and are greatly improved by use of the MRMPS method.
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Chapter 1
Introduction

1.1 Overview

The positron, e+, is the antimatter version of the electron. The positron has a positive

electronic charge of +1, which is +1.6×10−19 C, the converse of the electron. Besides

the charge and directly related properties (e.g. wave function), the positron has the

same properties as electron, such as mass (9.10×10−31 kg) and spin (1/2). In 1928,

Dirac first predicted the existence of the positron from theory when he studied on the

expression of relativistic quantum mechanics (Dirac, 1928). Actually, Dirac was not

aware of the prediction of a new particle, but thought it to be electrons with positive

charge and negative energy. Being enlightened by Chung-yao Chao’s experiment in

1930 on absorption and the scattering of gamma rays which gave absolutely greater

results (Anderson and Anderson, 1983) than theoretical prediction (Gray, 1929), his

classmate Carl D Anderson, in 1933, used the same radioactive source as Chao’s exper-

iment but in the cloud chamber to detect cosmic radiation (Anderson, 1933). In this

experiment, the tracks of positrons were, for the first time, observed (see Figure 1.1).

Meanwhile, the reason for the odd results from Chao’s experiment was revealed by

Anderson: the additional gamma rays not predicted in the calculations were due to the

electron-positron interaction during the absorption process and the gamma rays pro-

duced. These gamma rays, each with energy about 0.5 MeV, came from the electron-

positron annihilation (Anderson and Anderson, loc. cit., pp136). This observation

not only validated relativistic quantum field theory but also introduced a new research
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1.1 Overview

Figure 1.1: Track of positron when passing through the lead plate. The track com-

ing from below the plate is of a positron which is bent less in the magnetic field (URL:

http://en.wikipedia.org/wiki/Positron).

field: antimatter.

The positron is a stable particle in a vacuum. However, it may annihilate with a

molecular electron resulting in two or more gamma ray photons at low energies:

e+ + e− −→ nγ. (1.1)

At high energies, electron-positron annihilation may yield other particles, such as D

mesons. The annihilation process needs to comply with the charge conservation, energy

conservation, linear and angular momentum conservation, no matter how many gamma

rays and which kind of particle are emmitted. The ratio for producing three versus two

gamma rays is only 1/372 as found by Alkhorayef et al. (2009) experimentally. The

value of this ratio is even less for four versus two gamma rays. Any matter can annihilate

with its antimatter.

There is also a strongly correlated positron-electron configuration called positron-

12



1.1 Overview

ium, in which the electron and positron combines to a quasi-stable bound state. It was

first discovered by Deutsch (1951a,b). Positronium has the form of virtual states at

collision energies below the positronium formation threshold and provides a real open

channel for positron collisions at energies above the threshold. The two particles move

around the centre of mass. The electron and the positron finally annihilate with each

other yielding two gamma ray photons, the lifetime of positronium is 125 ps for the

singlet state (para-positronium), and 142 ns for the triplet state (ortho-positronium) in

vacuum, respectively. The lowest energy of positronium is -6.8 eV, so the positronium

formation threshold is given by

Eth = Eion − 6.8eV (1.2)

where Eion is the ionization energy of the atoms or molecules involved.

Positronium is the bound state of positron-electron pair. There is no static potential

in the positronium system due to the superposition of the centres of mass and charge.

A positronium can bind to electron to form a negative ion Ps− (e−e+e−), which was

discovered by Mills (1981), when both the electrons are in singlet spin states. Positron-

ium also can bind to a positron to be a new charged species with singlet spin state and

sufficiently small mass (Armour, 1983); a hydrogen atom to produce the positronium-

hydride molecule PsH. It is possible to form the positronium molecule Ps2 with the

two positrons and the two electrons being in singlet spin states.

Figure 1.2 shows the world’s only positronium beam producing equipment which

is located at University College London. Figure 1.3 is the schematic illustration of

this apparatus to measure total cross sections for positron and positronium collision

with molecules (Beale et al., 2006). Using this apparatus, many reliable experimental

measurements of Ps collisions have been made, e.g. Armitage et al. (2006).

The theoretical study of positronium molecule collisions is very complicated and

little has been done in this area. In this thesis, the study of positron annihilation with

normal matter is considered.

Positrons not only exist in cosmic rays, but also can be found in nuclear reaction

involving radioactive nuclei. They can be produced by process of positron emission

radioactive decay. A significant application of positrons is via positron emission to-

mography (PET). These scans can give, for the first time, detailed imaging exami-

nation of human brain function, cancer diagnosis and other physiological disease (see

13



1.1 Overview

Figure 1.2: Positronium beam apparatus in University College London (picture taken directly

from laboratory of Positron-, Positronium-, and Electron-Collisions group at UCL).

Figure 1.3: Flow chart of the measurement for positron and positronium collisions with atoms

and molecules (Beale et al., 2006).
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1.2 Positron interactions

Figure 1.4: Flow schematic diagram of a PET scan (image URL:

http://en.wikipedia.org/wiki/File:PET-schema.png)

figure 1.4). PET scans use a small dose of a radioactive isotope which decays by emit-

ting a positron. The positron then encounters an electron in the human body producing

two gamma ray photons. The gamma rays generated from this procedure are detected

by the PET scanner. Then a three-dimensional image of the detected region can be

produced. Although taking a PET scan involves ionizing radiation, it is believed to be

a safe technique and that the small amount of radiation is not harmful to the human

body.

1.2 Positron interactions

The key processes for low-energy positron collisions with molecules can be categorized

as follows:

- Elastic scattering:

e+ +AB −→ e+ +AB (1.3)

15



1.2 Positron interactions

At all energies, elastic scattering occurs for positron collision with atoms and

molecules. The electronic and vibrational states are not changed after elastic

scattering, but the direction of scattered positron may have changed. Integral

cross section and differential cross sections, which are feasibly to measure experi-

mentally, are always regarded as important physical quantity for elastic positron

scattering. It should be noted that the measured ’elastic’ cross sections usually

include rotational excitation, maybe and vibrational excitation, as these can not

be resolved experimentally and are often neglected in theoretical approximation.

As the incident energy increases, inelastic scattering becomes possible, e.g. positro-

nium formation, target excitation and ionization.

- Positronium formation:

e+ +AB(n) −→ AB+(n′) + Ps(nps) (1.4)

As the positron energy is increased above the positronium formation threshold

given by equation 1.2, positronium production begins. In this process, the inci-

dent positron captures one electron from the target molecule. If positronium is

formed, the system becomes more complicated to treat theoretically as exchange

effect between the electrons in the positronium atom and the electron in the

residual ion, and positronium-ion polarisation need to be considered accurately.

- Electronic excitation:

e+ +AB(n) −→ e+ +AB∗(n′) (1.5)

where AB∗ is the electronically excited target. The energy that the positron loose

after scattering corresponds to one of the target excitation energies. The target

is in a electronically excited state(n′) after scattering. As positrons do not couple

target states with different spin symmetries, only singlet target states can be

excited for a target with a singlet ground state. In electron collisions, singlet and

triplet excited electronic states can be reached. However, for positron collisions,

the excitation occurs only when the total spin of the target is unchanged.

Figure 1.5 shows the 1S-2S and 1S-2P excitation cross sections for positron colli-

sions with hydrogen atom. 30 target states and pseudostates, and three positro-

nium states were included in the calculation. It can be seen from fugure 1.5(a)
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1.2 Positron interactions

Figure 1.5: Excitation cross sections for positron-H collision using coupled-state approximation:

(a)1S-2S; (b)1S-2P (Kernoghan, 1996)

that the 1S-2S cross section rises suddenly near the excitation threshold, 10.2 eV,

and reaches the maximum value at about 15 eV. It falls quickly above 15 eV.

Figure 1.5(b) shows that after reaching a peak of the value of 0.9 πa2
0 at 20 eV,

the 1S-2P cross section falls slowly at higher energies.

- Vibrational excitation:

e+ +AB(ν) −→ e+ +AB∗(ν ′) (1.6)

The target is excited from an initial state (ν) to a vibrationally excited state (ν ′).

- Ionization:

e+ +AB −→ e+ +ABm+ +me−, (1.7)

When the total energy of the system is higher than the ionization threshold,

single ionization may occur. For electron impact ionization, it is impossible to

distinguish the two emerging electrons as we can not tell which was the incident

electron and which was the electron originally bound in the target. Positron im-

pact ionization does not have this problem. However, we have the possibility of

positronium formation which also ionized the target, which makes the problem

more complicated. It should be noted that the positronium formation cross sec-

tions is generally smaller than the ionization cross section at scattering energies

above the ionization threshold. Because the positronium formation is mainly into

17



1.3 The positron-molecule scattering problem

its ground state at lower energis, while at higher energies formation is mainly into

excited states (Charlton and Humberston, 2001).

- Annihilation:

e+ +AB −→ AB+ + γ rays. (1.8)

Positron annihilation with one electron of the target, may occur at all incident en-

ergies. The annihilation parameter, Zeff , is an important one and its calculation

provides a severe challenge for theory.

1.3 The positron-molecule scattering problem

Positron-molecule interactions are very different from electron-molecule ones due to

the opposite sign of the charge of the projectiles. First of all, the electron-electron

exchange effects with the target electrons which exist in electron collisions, are absent

for positron-molecule interactions as the incident positron is distinguishable from the

molecular electrons. For positron scattering, the projectile is attractive to the electrons

in the target and repulsive to the nuclei. These effects make the static interaction

between the positron and the target repulsive, while it is attractive for electron-molecule

scattering. However, the polarisation potential is attractive, as for the electron case,

due to the quadratic nature in the charge of the projectile as shown in the definition

(Alder and Winther, 1975):

Vp(r) = −4π

9

Z2e2

r4
α, (1.9)

where α is the dipole polarisability. Hence, usually, the total cross section for positron-

molecule interaction is smaller than the corresponding electron case at low energies.

This also makes positrons less likely to be bound than electrons. Positronium formation

and electron-positron annihilation only occurs when positrons are involved, they do not

occur during electron collisions.

Although one does not need to consider exchange effects, which leads to a sim-

plification of any calculation, positron collisions with molecules are more difficult to

treat than corresponding electron collisions due to the attractive nature between the

scattered positron and target electrons. This attraction results in great difficulty in

accurately modelling polarisation effects in the positron collisions. Various models are

used in this thesis to represent polarisation effects.

18



1.3 The positron-molecule scattering problem

The positron-molecule collision problem can be treated at different levels, which are

described as follows:

• Static

The scattering positron is considered to be a separate entity to the target whose

wavefunction is frozen in the collision. No polarisation effects are included. For

positron calculation with polar molecule, in which the polarisation effects are not

the dominant long-range interaction, the static model is believed to give toler-

able results. However, for non-polar targets, the static model does not produce

satisfactory results, particularly at low energies, due to the lack of the dominant

polarisation effects.

• Static plus polarisation (SP)

At this level, two-particle-one-hole configurations are included to represent the

polarisation. This means all single excitations are carried out for the target

electron. Square-integrable (L2) configurations are used to represent polarisation

and correlation effects.

• Close-coupling (CC)

In this approximation, polarisation effects are treated by coupling the target

states and incident positrons in the close-coupling expansion. The total scattering

wavefunction is expanded in terms of an, in principle, complete set of eigenstates

of the isolated target ψi (Lane, 1980):

ΦE =
∑

i

Fi(rp)ψi (1.10)

where Fi are the functions of the scattered positron with position vector rp.

Functions Fi satisfies the coupled equations

[∇2
p + k2

n]Fi(rp) =
∑

j

VijFj(rp) (1.11)

where ∇2
p is the Laplacian operator and kn is channel linear momentum. Vij is

the multipole scattering potentials.

Close-coupling method also includes quadratically integrable (L2) configurations

in the scattering wavefunction.
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1.3 The positron-molecule scattering problem

Figure 1.6: The s-wave phase shifts for positron/electron scattering with Ar. open symboles

represent electrons and full symbols represent positrons. For positron case: dashed curve with

circles, only static potential is considered; dot-dash curve with triangles, only polarisation

potential included in the calculation; solid curve with squares, both polarisation potential and

Ps-formation potential are included.

The effect of virtual positronium formation plays an important role for some positron

collisions with atom or molecule. For example, the virtual positronium formation can

contribute about 30% to the total correlation potential for positron collisions with hy-

drogen atoms and about 20% for collisions with helium atoms (Gribakin and King,

1994). The reason that virtual Ps formation attracts researchers’ attention is the fact

that there is a significant difference between the polarisation calculation and the pre-

cise variational results which are obtained by finding the minimum energy of the trial

wavefunction based on the variational principle. The discrepancy is believed to arise

from the contribution of virtual Ps formation. This means that an incident positron

may form a virtual positronium atom with a target electron.
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1.4 Positron annihilation in molecules

It can be seen from Figure 1.6 that phase-shifts which include the contribution

of virtual Ps formation are much higher than results including static or polarisation

potentials only (Gribakin and King, 1994). The importance of virtual Ps formation also

can be demonstrated by comparison of the results of scattering cross section calculations

(see Figure 1.7). As shown, the contribution from the virtual Ps formation leads to an

excellent agreement with the accurate variational calculations (Humberston, 1978) and

various measurements.

1.4 Positron annihilation in molecules

Positron annihilation with atoms and molecules is one of the most important features by

which positron collisions differ from the corresponding electron collisions. Obtaining

the annihilation parameter Zeff is an important objective for positron researchers.

The dimensionless parameter Zeff is usually characterized by the effective number of

active electrons of the target available to annihilate with the incoming positron with

momentum k. Zeff is also affected by the temperature (T) of incident positron. Usually,

Zeff is given as a single number at room temperature T=296K. Positron annihilation

with atoms and molecules may yield one, two or three γ-rays, also may result in electron

emission (Charlton and Humberston, 2001). Among these processes, the probability

of annihilation into two γ rays is the major channel. Non-radiative or one gamma ray

annihilation, processes (a) and (b) in figure 1.8, only occur if a nucleus or an atom are

involved in order to satisfy energy and momentum conservation.

The original definition of the annihilation parameter for a positron in an atomic or

molecular gas is given by

Zeff =
λ

πr20cn
(1.12)

where λ is the observed rate of the free-positron annihilation processes; r0 = e2/4πε0mc
2

is the classical radius of an electron; c is the velocity of light; n is the electron density

of target being in the vicinity of positron. The spin-averaged annihilation cross section

at an incident energies below the positronium formation threshold is usually given by

σann =
λ

nν
= πr2

0

c

ν
Zeff (1.13)

where ν is the velocity of the incident positron.
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1.4 Positron annihilation in molecules

Figure 1.7: Cross sections for positron collision with helium: dash curve, static potential only;

dot-dash, the polarisation potential only; solid curve, with Ps-formation potential added to

polarisation one; long dash curve is the theoretical variational calculations (Humberston, 1978).

Compared to measurements (Stein et al., 1978; Cantre et al., 1972; Sinapius et al., 1980)
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1.4 Positron annihilation in molecules

Figure 1.8: Mechanisms which may result from positron annihilation with an electron: (a)

nonradiative, (b) one gamma ray, (c) two gamma rays, (d) three gamma rays. From Charlton

and Humberston (2001).

Zeff can be obtained from the total scattering wavefunction Ψ(r1 · · · rZ ; rp), nor-

malized to unit positron density,

Zeff =

Z
∑

i=1

∫

|Ψ(r1 . . . rZ ; rp)|2δ(rp − ri)dr1 · · · drZdrp (1.14)

where r1, . . . , rZ are the coordinates of the Z electrons of the target and rp is the

coordinate of positron. It can be seen from equation (1.14) that Zeff is sensitive to

the accuracy of the total wave function Ψ. This means that to obtain an accurate Zeff

value, the wave function Ψ must provide an accurate representation of the positron-

electron coordinate particularly as the electron-positron distance rip → 0. If the first

Born approximation is employed for the annihilating system, with the positron repre-

sented by a plane wave and the target undisturbed in the static atomic field, then Zeff

would be equal to the number of target electrons Z.

It is well known that the value of Zeff is always larger than the total electron

number Z. For example, the experimental result of Zeff for Hydrogen molecule is

14.7 (Laricchia et al., 1987). Particularly, for some organic molecules the measured

Zeff values are much larger than Z. For acetylene molecule, Zeff=3160 and Z=14.

This phenomenon is assumed to be due to the formation of pseudo-bound-state for

the positron with molecule (Paul and Saint-Pierre, 1963), which means the electrons
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1.5 Objectives

in the molecule have more time to react with the positron. At very low energy, the

distortion of molecule is much stronger than at higher energy resulting in the fact

that Zeff decreases with increasing positron energy below the threshold of positronium

formation.

In this thesis, all Zeff results are calculated for positron energies below the positro-

nium formation threshold.

1.5 Objectives

The objectives of this thesis are as follows:

• To build target models for polar molecule H2O, non-polar molecules H2 and C2H2

by which the vertical excitation energies, dipole moments and polarisabilities can

be obtained satisfactorily.

• To construct scattering calculations using the R-matrix method and show how

important polarisation effects can be included in calculations.

• Using the Molecular R-matrix with pseudostates method to treat positron-molecule

collisions at energies below the positronium formation threshold to show the im-

provement this method can contribute. To obtain eigenphase sums, elastic (rota-

tionally summed) differential, integral and momentum transfer cross sections.

• To modify the R-matrix code and specify the outer region wave function to cal-

culate annihilation parameter Zeff for molecules with H2 and C2H2 as test cases.

1.6 Layout of the thesis

Chapter 2 introduces some approximation methods which are applied to solving the

positron-molecule collision problem. The Born-Oppenheimer approximation, Hartree-

Fock self consistent field method, configuration interaction method and fixed-nuclei

formulation of the scattering problem are discussed.

Chapter 3 describes derivation of the molecular R-matrix method and its exten-

sions, the molecular R-matrix with pseudostates method and the partitioned R-matrix

method. Eigenphase, integral cross section and other quantities and observables ob-
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1.6 Layout of the thesis

tained using the R-matrix method are presented. The structure of the codes used to

implement the R-matrix theory is also introduced.

Chapter 4 discusses the annihilation parameter in positron collisions based on the

R-matrix method. It gives a method for the accurate formulation of outer region wave

functions. Annihilation parameters from initial tests for positron-H and positron-H+
2

at energies below the positronium formation threshold are used as test cases.

Chapters 5-8 describe the calculations and results for positron-molecule collisions

using the R-matrix method.

Chapter 5 presents the positron collisions with H2O molecule at energies below the

positronium formation threshold. Static, static plus polarisation and close coupling

with natural orbital models are used to describe the increasing level of polarisation

effects included in the calculation. Differential cross sections are calculated for collision

energies of 0.25 eV, 2 eV, 5 eV and 10 eV. Integral cross sections and momentum transfer

cross sections are also calculated and compared to measurements and the corresponding

electron case.

Chapter 6 discusses positron scattering by H2 molecule. Several models are em-

ployed to treat this problem. Particularly, the molecular R-matrix with pseudostates

(MRMPS) method is introduced into our calculation to allow for the polarisation effects

which need to be represented appropriately. Integral cross sections are obtained at en-

ergies below the positronium formation threshold and compared to previous theoretical

results and observations.

Chapter 7 discusses positron scattering by the C2H2 molecule using the MRMPS

method. Various MRMPS models are tested to generate good target representations.

Polarisabilities for each model are discussed. Integral cross sections are calculated below

5 eV and compared to experimental data.

Annihilation is one of the most significant features of positron collisions. Chapter

8 applies the modified R-matrix method to calculations of the annihilation parameter

Zeff for positron collision with H2 and C2H2.

Chapter 9 give the conclusions for the positron calculation performed. Future work

that could arise from the research presented is discussed.
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Chapter 2
General Theory

2.1 Born-Oppenheimer approximation

For molecular systems with Ne electrons and Nn nuclei (see figure 2.1), the full non-

relativistic Hamiltonian in atomic units can be written as

H = −1

2

Ne
∑

i=1

∇2
i−

Nn
∑

A=1

1

2MA
∇2
A−

Nn
∑

A=1

Ne
∑

i=1

ZA
|ri −RA|

+

Ne
∑

j=1

Ne
∑

i>j

1

|ri − rj |
+

Nn
∑

A=1

Nn
∑

B>A

ZAZB
|RA −RB|

.

(2.1)

The first and second terms are the kinetic energies of the electrons and the nuclei, re-

spectively. The third term describes the attractive electron-nucleus Coulomb potential.

The subsequent two terms represent the repulsive electron-electron and nuclear-nuclear

potentials, respectively. If one can treat the electronic motion and the nuclear motion

separately, the total molecular wavefunction can be formed by a product of electronic

and nuclear wavefunctions to give what is generally called the Born-Oppenheimer ap-

proximation.

The Born-Oppenheimer approximation is based on the property that the electrons

in a molecule are much lighter than the nuclei and therefore move much more rapidly.

This approximation assumes that electrons surrounding the nuclei can respond instan-

taneously to even a small motion of the nuclei in order to make adjustment to the given

potential of the nuclei. Hence, the nuclei can be assumed to be fixed. That means the

kinetic energy term for the nuclei in equation (2.1) is neglected and the inter-nuclear
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2.1 Born-Oppenheimer approximation

Coulomb interaction can be treated as a constant. The Hamiltonian now becomes

Helec = −1

2

Ne
∑

i=1

∇2
i −

Nn
∑

A=1

Ne
∑

i=1

ZA
|ri −RA|

+

Ne
∑

j=1

Ne
∑

i>j

1

|ri − rj|
. (2.2)

and the time-independent Schrödinger equation may be written as

Helecψelec(ri;RA) = εelecψelec(ri;RA). (2.3)

Its solutions depend demonstrably on the electronic position ri and parametrically on

the nuclear position RA. That means for any configuration of the nuclei (e.g. vi-

bration), the electronic wavefunction ψelec is modified to a different function of the

electronic coordinates. However, the nuclear repulsion term is not included in equa-

tion (2.2). Adding the repulsive Coulomb interaction between nuclei to the electronic

energy eigenvalue gives

Eelec = εelec +

Nn
∑

A=1

Nn
∑

B>A

ZAZB
|RA −RB |

. (2.4)

The same assumptions can be used to solve the nuclear motion as used for the electronic

part of the problem. Since the electronic motion is much faster than the nuclear motion,

the electronic motions of equation (2.1) can be accounted for the average distribution

of electronic density. Consequently, the Hamiltonian for the nuclear motion in the

averaged field of the electrons is

Hnucl = −
Nn
∑

A=1

1

2MA
∇2
A +

〈

ψelec

∣

∣

∣

∣

∣

−
Ne
∑

i=1

1

2
∇2
i −

Nn
∑

A=1

Ne
∑

i=1

ZA
|ri −RA|

+

Ne
∑

j=1

Ne
∑

i>j

1

|ri − rj|

∣

∣

∣

∣

∣

ψelec

〉

+

Nn
∑

A=1

Nn
∑

B>A

ZAZB
RAB

= −
Nn
∑

A=1

1

2MA
∇2
A + εelec(RA) +

Nn
∑

A=1

Nn
∑

B>A

ZAZB
RAB

= −
Nn
∑

A=1

1

2MA
∇2
A +Eelec(RA) (2.5)

The eigenvalue of the total energy E(RA), depending on the position of the nu-

clei RA, gives an interatomic potential for the nuclear motion. Hence in the Born-

Oppenheimer approximation the nuclei move in the potential energy produced by the

stationary electronic state.
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2.2 Hartree-Fock self consistent field method

Figure 2.1: Coordinate of a molecular system. ei and ej are electrons; A and B are nuclei

(Szabó and Ostlund, 1996).

2.2 Hartree-Fock self consistent field method

The simplest wave function for a N-electron atomic or molecular system can be de-

scribed by a Slater determinant (Szabó and Ostlund, 1996)

|Ψ〉 = |χ1χ2 . . . χaχb . . . χN 〉 (2.6)

where χi are spin-orbitals. The Hartree-Fock approach includes the averaged electron-

electron repulsions into the wavefunction (2.6), by assuming that each electron is placed

in the potential of the nuclei and the averaged field of residual (N-1) electrons. Ac-

cording to the variational principle, the best wave function gives the lowest value of

electronic energy E0, which is closest to the exact electronic energy of the system. For

normalized wave functions:

E0(Ψ0) = 〈Ψ0|Ĥelec|Ψ0〉 =
∑

a

〈a|ĥ|a〉 +
1

2

∑

ab

〈aa|bb〉 − 〈ab|ba〉 (2.7)

where

〈ij|kl〉 =

∫

dτ1dτ2χ
∗
i (x1)χj(x1)r

−1
12 χ

∗
k(x2)χl(x2), (2.8)
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2.2 Hartree-Fock self consistent field method

the spin-orbitals are orthogonal,

〈χi|χj〉 = δij . (2.9)

ĥ is the one-electron Hamiltonian

ĥ(1) = −1

2
∇2

1 −
Nn
∑

A=1

ZA
r1A

(2.10)

The spin-orbitals are modified by minimising E0. Thus, the HF eigenvalue equation

can be written as

f̂(1)χa(1) = εaχa(1) (2.11)

where εa is the orbital energy of χa. Operator f̂ is defined as the Fock operator, and

contains the core-Hamiltonian operator ĥ and the one-electron potential operator G.

f̂(1) = ĥ(1) +G(1) (2.12)

G is called the Hartree-Fock potential and can be written as

G(1) =
∑

b6=a
[Jb(1) −Kb(1)] (2.13)

where Jb is defined as the Coulomb operator and represents the Coulombic repulsion

between electrons 1 and 2,

Jb(1)χa(1) =

[∫

dτ2χb(2)
∗ 1

r12
χb(2)

]

χa(1) (2.14)

and Kb is the exchange operator which represents the effect of the Pauli principle

Kb(1)χa(1) =

[
∫

dτ2χb(2)
∗ 1

r12
χa(2)

]

χb(1). (2.15)

In short, the Hartree-Fock approximation simplifies a complicated many-electron

problem to an effective one-electron problem by treating electron-electron repulsion in

an averaged way. Usually the nonlinear HF equations are solved iteratively by the

self-consistent field (SCF) approach. In this method, the one-particle HF potentials

are constructed using a set of spin-orbitals, then a set of HF equations are solved to

get a new set of improved spin-orbitals which are substituted back to construct new

Fock operator and so on until the solutions are self-consistent.

29



2.3 Configuration interaction

2.3 Configuration interaction

In some cases, the Hartree-Fock self consistent field method does not give a good

representation of states due to use of only a single Slater determinant to describe

the many-electron system. The configuration interaction (CI) method gives a better

description of the system; this method includes dynamical correlation effects between

electrons.

The interaction between electrons needs to be considered carefully. Motion for one

electron may lead to very different repulsion to others. This phenomenon is called

electron correlation. The CI method aims to include the electron correlation in the

calculation. The correlation energy may be added to the Hartree-Fock energy EHF to

give total non-relativistic electronic energy of the system,

E0 = Ecorr +EHF (2.16)

The full wavefunction can be represented by a linear combination of N-electron Slater

determinants of configuration state functions (CSFs)

ΦCI =
∑

i

CiΦi (2.17)

= c0Φ0 +
∑

ar

craΦ
r
a +

1

2!

∑

abrs

crsabΦ
rs
ab + · · · (2.18)

where Φ0 is the HF wavefunction; Φr
a are the singly excited determinants with one

electron excited from an occupied spin-orbital χa in Φ0 to a virtual spin orbital χr;

Φrs
ab are the doubly excited configurations with two electrons excited from spin-orbitals

χa and χb in Φ0 to orbitals χr and χs. If N-tuply excited configurations are included,

the CI expansion for an N-electron wave function is complete and called ’Full’ CI.

Thus, the exact solution for a given orbital set would be obtained by diagonalising the

N-electron Hamiltonian operator. However, in practice only a finite set of N-electron

wavefunctions can be included considering the size of Hamiltonian matrix obtained.

Figure 2.3 shows the potential energy curves of the small molecule H2 as a function of

the bond length for different methods.

The CI expansion based on HF spin-orbitals converges slowly. In order to obtain

a spinless one-electron basis for which the CI expansion convergents faster than HF

orbitals, natural orbitals (NOs) (Löwdin, 1955) can be used. To define the NOs, the
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2.3 Configuration interaction

Figure 2.2: Potential energy for the H2 molecule (Harvey, ”Molecular Electronic Structure”,

University of Bristol, 2001)

one electron density matrix can be written as:

γ(x1,x
′
1) = N

∫

dx2 · · · dxNΦ(x1,x2, · · · ,xN )Φ∗(x′
1,x2, · · · ,xN ) (2.19)

It also can be expanded in the orthonormal basis of HF spin orbitals as

γ(x1,x
′
1) =

∑

ij

ψi(x1)γijψ
∗
j (x

′
1) (2.20)

If Φ is the HF ground state wave function Φ0, it becomes

γHF (x1,x
′
1) =

∑

a

ψa(x1)ψ
∗
a(x

′
1) (2.21)

In most of the cases, Φ is not Φ0. Then the one electron reduced density matrix is

not diagonal in the basis of HF spin orbitals. The matrix γ is Hermitian, so it can be

transformed to a diagonal matrix and rewritten as

γ(x1,x
′
1) =

∑

i

λiηi(x1)η
∗
i (x

′
1) (2.22)

where the orthonormal spin orbitals ηi are called natural orbitals; λi are the eigenvalues

of the density matrix, representing the average number of electrons in each NO and

called the occupation numbers. In the R-matrix method, NOs with relatively small

occupation number can be neglected due to the less importance to the CI expansion.
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2.4 Fixed-nuclei formulation of the scattering problem

Only the NOs with the largest occupation number, which give the lowest eigenenergy,

are included in the CI expansion.

In practice, a full CI can only be performed for small molecules with few electrons.

A complete active space configuration interaction (CAS CI) can be employed. In the

CASCI method, all excitations are performed within a defined set of spin orbitals. It is

usually necessary to freeze some electrons in a core. Hence, the lowest energy orbitals

are kept doubly occupied in all configurations. Due to the fact that positrons do not

couple to the target states with different spin, only singlet excited states are needed in

the close-coupling expansion for stable, singlet target molecules.

2.4 Fixed-nuclei formulation of the scattering problem

Assume the nuclei are fixed. Then, only the electronic Hamiltonian for the particle-

molecule collision system needs to be solved. Two reference frames (Lane, 1980) can

be used to simplify the equations describing the collision process: the BODY frame

(figures 2.4) and the laboratory (LAB) frame (figures 2.3). Both frames are systems

centred at the centre of mass. The BODY frame is a coordinate system whose z axis

is taken along the maximum symmetry axis of the molecule. While in the LAB frame

the z axis lies along the initial momentum vector of the incident particle. r and R

are the position vectors of the electrons and nuclei of the molecule, respectively and rp

represents the coordinate of the scattering particle in the BODY frame and the primed

coordinates refer to the LAB frame.

The Hamiltonian for the particle-molecule collision system can be written as

HN+1 = −1

2
∇2
γ +Helec

N + Vp−m (2.23)

where ∇2
p is the Laplacian of the scattering particle in the BODY frame. H elec

N is the

N-electron target Hamiltonian given by equation (2.2) and Vp−m is the positive charged

particle-target molecule interaction potential energy,

Vp−m(r′p, r
′,R) =

Nn
∑

A=1

ZA
|r′p −RA|

−
Ne
∑

j=1

1

|r′p − r′j |
. (2.24)

For a target molecule the electronic states are represented by functions ψelecA (r,R),

where A represents the electronic quantum numbers. These wave functions must sat-

isfy the electronic Schrödinger equation (2.3). In the fixed-nuclei formulation, the

32



2.4 Fixed-nuclei formulation of the scattering problem

Figure 2.3: Coordinates of a molecular system in the LAB frame: ei is the electron; A, Band

C are nuclei (Lane, 1980).

Schrödinger equation for the Ne + 1 system is written as

(HN+1 − ε)ΨFN
ε (rp, r;R) = 0 (2.25)

The fixed-nuclei approximation is valid in the region where the collision time is very

short. However, this approximation is not applicable when the motion of positrons is

dominated by strong long-range interations.
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2.4 Fixed-nuclei formulation of the scattering problem

Figure 2.4: Electronic coordinates of a molecular system in the BODY frame (Lane, 1980).
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Chapter 3
R-matrix theory

3.1 Overview

R-matrix theory was originally established for applications to nuclear physics by Wigner

(1946a,b) and Wigner and Eisenbud (1947). Lane and Thomas (1958) gave an early

review of the R-matrix method for nuclear collisions. The first application of R-matrix

techniques to atomic scattering by electrons was performed by Burke and co-workers

(Burke et al., 1971; Burke and Robb, 1975; Burke, 1976). Schneider (1975), Schneider

and Hay (1976) and Burke et al. (1977) applied molecular R-matrix theory to electron-

molecule scattering; followed by developments by several groups, including Burke et al.

(1983), Tennyson et al. (1984) and Nestmann et al. (1994), for the study of electron

collisions with diatomic molecules and polyatomic molecules.

The first time that the molecular R-matrix theory was adapted to positron-molecule

collisons was the study of low energy positron-H2 and positron-N2 scattering by Ten-

nyson (1986). For positron studies, the kinetic and Coulomb one electron integrals are

treated separately. The exchange effects that exist in electron codes could be set to

zero for positron collisions. After the initial studies, the theory was applied to various

diatomic targets (Tennyson and Morgan, 1987; Tennyson and Danby, 1988; Danby and

Tennyson, 1988, 1990b, 1991) using the diatomic R-matrix code for which Slater Type

Orbitals (STOs) are used to represent the target wave function. However, insufficient

positron-electron correlation was included in these calculations causing the reported

results to poorly reproduce the low-energy collision behaviour. Twenty years later,
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3.2 The inner region

the molecular R-matrix method was reactivated and developed for low energy positron

collisions, that is energies below the positronium formation threshold by Franz et al.

(2008) using the polyatomic R-matrix code. Both the target wave function and the

continuum functions in the inner region are represented by Gaussian Type Orbitals

(GTOs) in the polyatomic R-matrix code.

The scattering process can be described by the time-independent Schrödinger equa-

tion

HN+1Ψ = EΨ (3.1)

in which HN+1 is the Hamiltonian operator, given by

HN+1 = −1

2

N+1
∑

i=1

52
i −

N
∑

i=1

Nm
∑

j=1

Zj
|ri −Rj|

+

N
∑

i>j=1

1

|ri − rj|
+

Nm
∑

i>j=1

ZiZj
|Ri −Rj |

(3.2)

−
N
∑

i=1

1

|rp − ri|
+

Nm
∑

j=1

Zj
|rp −Rj |

(3.3)

where Nm is the number of nuclei; Zj are the nuclear charges. Atomic units, for which

~ = 1, me = 1 and e = 1, are used for all the equations in this chapter.

Within the R-matrix method, to get solutions of the scattering processes, the con-

figuration space is divided into two regions (see figure 3.1): an inner region and an

outer region. The inner region (r ≤ a), is defined by a sphere of radius a centred on

the molecular centre of mass which is normally defined by a equals 10 to 15 a0. This

sphere must include the entire target wave functions. In this region, although exchange

effects are absent in positron collisions, the positron-electron correlation is very impor-

tant because of the attractive nature of the positron-electron interaction and must be

treated in detail.

The outer region potential are given by the target multipole moments as r ≥ a.

These are similar to the corresponding electron case but with the opposite charge of

the projectile. The two regions are connected by matching the inner and outer region

wave functions at r = a.

3.2 The inner region

The wave function of the target molecule is described by a set of basis functions repre-

senting the molecular orbitals formed as linear combinations of atomic orbitals centred

on the nuclei. Early positron-molecule collisions using R-matrix method employed
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3.2 The inner region

Figure 3.1: Division of configuration space in the fixed nuclei R-matrix theory.

Slater-type orbitals (see Slater (1960)) to represent diatomic targets (Tennyson, 1986;

Tennyson and Danby, 1988; Danby and Tennyson, 1990a,b, 1991). However, Gaussian-

type orbitals (GTOs) are usually used to represent polyatomic molecules and only these

are considered here.

3.2.1 The inner region wave function

In the inner region, the total wave function describing the collision process with energy

E (corresponding to the solution of equation (3.1)) takes the following form:

Ψ(E) =
∑

k

ψkAEk (3.4)
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3.2 The inner region

where ψk are energy-independent basis states constructed by the close-coupling expan-

sion:

ψk =
∑

ij

aijkΦ̃i(x1, ..., xN , σp)uij(xp) +
∑

i

bikχi(x1, ..., xp), (3.5)

where xp is the coordinate representing the positron; Φ̃i are channel functions formed

by coupling the target states ψNi with the spin-angle functions of the scattered particle

Y m
l (ϑp, ϕp)s(σp); uij(xp) are continuum orbitals and χi are quadratically integrable

(L2) correlation functions constructed from occupied and virtual molecular orbitals of

the target. For electron collision, there should be an antisymmetrization operator in the

first term of equation (3.5). While for the positron case, the projectile is distinguishable

from the target electrons, so the need for antisymmetrization is removed. The ’L2’

functions are important both for relaxing the orthogonality between the target and

continuum orbitals, and for representing short-range polarisation effects not included in

the truncated close-coupling expansion. For example, if the positron and the electrons

share a common orbital set then the positron is allowed to occupy orbitals already fully

occupied by electrons.

The continuum basis functions, which have the form fili(r) = 1
ruil(r)Y

mi

li
(θ, φ), in

diatomic R-matrix method are obtained numerically from the solution of the second-

order differential equation:

[

d2

dr2
− l(l + 1)

r2
+ 2V0(r) + k2

i

]

uil(r) = 0 (3.6)

with the R-matrix boundary conditions

uil(0) = 0,
a

uil(a)

duil
dr

|r=a = b, (3.7)

where V0(r) is the single centre potential and k2
j are the eigenenergies. b in the boundary

condition is an arbitrary constant, usually chosen to be zero. The continuum basis

functions also form an orthonormal set

∫ a

0
uiujdr = δij (3.8)

To get continuum orbitals, Schmidt orthogonalisation is used to orthogonalised

the continuum molecular orbitals to the target orbitals. Subsequently, the continuum

molecular orbitals are orthogonalised with themselves using symmetric or Löwdin or-

thogonalisation (Löwdin, 1950).
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3.2 The inner region

The diatomic code actually required a ’Buttle’ correction (Buttle, 1967) to be added

to the diagonal elements of the R-matrix to solve the convergence problem of the R-

matrix expansion (shown below). But in the polyatomic R-matrix code, a ’Buttle’

correction is not required because the above artificial boundary condition is also not

used in the polyatomic code. Gaussian functions are used to represent continuum basis

functions in the polyatomic code. The continuum functions are obtained by fitting GTO

basis sets to Bessel functions in the inner region (Nestmann and Peyerimhoff, 1990). A

program GTOBAS was produced to represent both Bessel and Coulomb functions by

fitting GTO continuum basis sets (Faure et al., 2002). All integrals involving continuum

basis functions are evaluated in the configuration space. Spatial integration outside the

R-matrix sphere is subtracted from an infinite range integrals (Tennyson and Morgan,

1999).

3.2.2 Derivation of the R-matrix

The variational coefficients aijk and bik of equation (3.5) are obtained by diagonalizing

the Hamiltonian HN+1. However, the Hamiltonian HN+1 is not Hermitian in the inner

region due to a surface term at r = a which results from the kinetic energy operators.

So a Bloch operator (Bloch, 1957) is introduced to ensure that operator HN+1 +LN+1

is Hermitian within the volume r ≤ a

LN+1 =

N+1
∑

i=1

1

2
δ(ri − a)

(

d

dri
− b

ri

)

(3.9)

where b is an arbitrary constant, normally choose to be zero. Hence, aijk and bik are

obtained by diagonalizing HN+1 + LN+1

〈ψk|HN+1 + LN+1|ψk′〉 (3.10)

The Schrödinger equation 3.1 can be rewritten by adding the Bloch operator

(HN+1 + LN+1 −E)|Ψ〉 = LN+1|Ψ〉 (3.11)

which gives the formal solution

|Ψ〉 = (HN+1 + LN+1 −E)−1LN+1|Ψ〉 (3.12)

Refering to equation (3.10), the inner region wave functions ψk are the eigenfunctions

of the Hamiltonian matrix (HN+1 + LN+1) with eigenvalues Ek.

〈ψk|HN+1 + LN+1|ψk′〉 = δkk′Ek (3.13)
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3.2 The inner region

So the inverse operator in equation (3.12) can be expanded in terms of ψk, giving

|Ψ〉 =
∑

k

|ψk〉
1

(Ek −E)
〈ψk|LN+1|Ψ〉 (3.14)

which, by comparison with equation (3.4), gives

AEk =
〈ψk|LN+1|Ψ〉
Ek −E

. (3.15)

Expanding the Bloch operator in terms of the channel functions described above,

|ψNi Y mi

li
〉

1

2

N+1
∑

i=1

∑

j=1

|ψNj Y
mj

lj
〉δ(ri − a)

(

d

dri
− b

ri

)

〈ψNj Y
mj

lj
|. (3.16)

AEk therefore becomes

AEk =
1

2

N+1
∑

i=1

∑

j=1

〈ψk|ψNj Y
mj

lj
〉δ(ri − a)

(

d
dri

− b
ri

)

〈ψNj Y
mj

lj
|Ψ〉

Ek −E
. (3.17)

We can define the reduced radial wave function evaluated on the boundary of the inner

region as

Fj(a) = 〈ψNj Y
mj

lj
|Ψ〉 (3.18)

as well as the surface amplitudes

ωjk(a) = 〈ψNj Y
mj

lj
|ψk〉. (3.19)

The Dirac brackets in equations (3.18) and (3.19) denote that the integrations are

carried out over the entire electronic space and coordinates except the radial coordinate

of the scattered positron or electron. The coefficient AEk takes the form

AEk =
1

2a

∑

j=1

ω†
jk(a)

(

aF
′

j (a) − bFj(a)
)

Ek −E
(3.20)

In order to define the total scattering wave function it is essential to construct Fj and

their derivatives F
′

j at the R-matrix boundary. Substituting (3.20) into (3.4), and then

projecting it onto the channel basis function |ψNi Y mi

li
〉

〈ψNi Y mi

li
|Ψ〉 =

1

2a

∑

k,j

ω†
jk(a)

(

aF
′

j(a) − bFj(a)
)

Ek −E
〈ψNi Y mi

li
|ψk〉. (3.21)

One obtains

Fi =
1

2a

∑

ijk

ω†
jk(a)ωik(a)

Ek −E

(

aF
′

j (a) − bFj(a)
)

(3.22)
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3.3 The outer region

whose elements can be defined as the R-matrix

Rij =
1

2a

∑

k

ω†
jk(a)ωik(a)

Ek −E
(3.23)

The surface amplitudes ωjk(a) and the R-matrix poles Ek are obtained from the eigen-

values and eigenvectors of the Hamiltonian matrix given by equation (3.13). Hence,

the reduced radial function and therefore coefficient AEK can be rewritten in terms of

the R-matrix

Fi(a) =
∑

j

Rij

(

aF
′

j(a) − bFj(a)
)

(3.24)

and

AEk =
1

2a(Ek −E)

∑

ij

wTikR
−1
ij Fj (3.25)

The total scattering wave function Ψ in the inner region can be establised by de-

termining the R-matrix, reduced radial function F and coefficient AEk for any incident

energy E.

3.3 The outer region

To solve the positron/electron-molecule scattering problem, in the outer region (r ≥ a),

where the correlation effects vanish, the close-coupling expansion of the wave function

is used in terms of the channel basis function ψNi Y
mi

li
(Gillan et al., 1995)

Ψ =
∑

i

ψNi Y
mi

li
r−1
p Fi(rp) (3.26)

In this equation, the scattered positron is represented by the reduced radial wave func-

tions F (r) as the multi-centre quadratically integrable functions χNi vanish in the outer

region. The wave functions ψi are target states. For positron-molecule scattering, each

target state can lead to several channels, which means even a one target state scattering

calculation yields a multi-channel problem.

Substituting the outer region wave function into the Schrödinger equation (3.1)

and projecting onto the channel functions ψiYlimi
leads to n-coupled second-order dif-

ferential equations for the reduced radial functions (Burke et al., 1971)

(

d2

dr2
− li(li + 1)

r2
+ k2

i

)

Fi(r) = 2
∑

j

Vij(r)Fj(r) (3.27)
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3.3 The outer region

where Vij is the long-range potential matrix given by the multipole expansion

Vij(r) =

λmax
∑

λ=0

αλij
rλ+1

, r ≥ a (3.28)

in which the potential coefficients are determined by Burke et al. (1977)

αλij =

(

2li + 1

2lj + 1

) 1

2

C(liλlj ;mimλmj)C(liλlj ; 000)Q
(λ)
ij (3.29)

where C(l1l2l3;m1m2m3) is a Clebsch-Gordan coefficient. Q
(λ)
ij is the target moment

in which λ = 1 for representing dipoles, λ = 2 for quadrupoles, and λ = 0 for the

Coulomb potential given by an ionic target.

In equation (3.27), the channel energies are

k2
i = 2(E −Ei), (3.30)

where Ei is the eigenenergy of the target state χi and E is the scattering energy. If

k2
i ≥ 0, it gives an open channel since it can be reached asymptotically. Whereas if

k2
i < 0, it gives a closed channel.

Solving equation (3.27) yields na (the number of open channels) linearly indepen-

dent, asymptotic solutions at each incident energy,

Fij ∼
r→∞

1
√

kj
(sin θjδij + cos θjKij) (3.31)

and nc, which is the number of close channels, solutions satisfying the asymptotic

boundary conditions

Fij ∼
r→∞

e−|kj |r. (3.32)

In equation (3.31),

θj = kjr − 1
2 ljπ − ηjln(2kjr) + σlj

ηj = −(Z −N)/kj

σlj = argΓ(lj + 1 + iηj)

The coefficient Kij is a na × na dimensional real symmetric matrix. To obtain this K-

matrix, n+ na linearly independent solutions υij(r) of equation (3.31) are introduced:

υij ∼
r→∞

sin θiδij + O(r−1) i = 1 · · · n, j = 1 · · · na
υij ∼

r→∞
cos θiδij−na + O(r−1) i = 1 · · · n, j = na + 1 · · · 2na

υij ∼
r→∞

exp(−|ki|r)δij−na + O(r−1) i = 1 · · · n, j = 2na + 1 · · · n+ na

(3.33)
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3.3 The outer region

where n is the total number of the coupled equations (n = na + nc). The solution can

be written:

Fij(r) =

n+na
∑

l=1

xljυil(r) i = 1 · · · n, j = 1 · · · na (3.34)

where the coefficients xlj are given by

xlj = k
1

2

j δlj l = 1 · · · na (3.35)

n+na
∑

l=1

xlj

(

υil(a) −
n
∑

m=1

Rim

(

a
dvml
dr

− bvml

)

|r=a
)

= 0 i = 1 · · · n (3.36)

which together give the K -matrix

Kij = k
1

2

i xi+naj i, j = 1 · · · na (3.37)

The eigenphase sums can be obtained from the diagonalised K-matrix KD
ii , as

δ(E) =
∑

i

arctan(KD
ii ) (3.38)

where the sum runs over the na channels. The K-matrix can be transformed into the

scattering matrix S, which is given by

S =
(1 + iK)

(1 − iK)
(3.39)

The T-matrix is given by

T = S − 1 =
2iK

(1 − iK)
(3.40)

and can be used to calculate the integral cross section (ICS) and differential cross

sections (DCS). The integral cross section for excitation from the state i to state i ′ can

be written as (Burke, 1982)

σ(i → i′) =
π

k2
i

∑

S

(2S + 1)

2(2Si + 1)

∑

Γll′

|TΓS
ili′l′ |2 (3.41)

where Si is the spin angular momentum of the ith target state, S is the total spin

angular momentum, Γ runs over symmetry, l and l′ are orbital angular momentum

quantum numbers related to i and i′ states. The number of partial waves required

to converge the cross section can be very large if the interaction potential includes

long-range dipole terms. However, the partial-wave expansion does not converge in

the fixed-nuclei approximation. The dipole Born approximation is used to solve this

problem since it can be used to calculate the contribution of all partial waves to the
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3.3 The outer region

cross section for a charged particle in a dipole potential, both summed and individually.

Contribution of high partial waves to the total cross section can be obtained by adding

the TCS calculated using the Born approximation and then subtracting the contribution

of low partial waves. Consequently, the DCS can be obtained by

dσtotal

dΩ
=
dσBorn

dΩ
+

Lmax
∑

L=0

(AL −ABornL )PL(cos θ) (3.42)

where the first term is the plane wave Born cross section and the second term is the

cross section derived from a finite expansion of the first Born cross section containing

the same number of partial waves as σ(i → i′). The coefficients AL are obtained as

partial wave expansions up to Lmax (Itikawa, 2000).

The above procedure is a simple way to implement the Born correction, which has a

consequence that ∆σ might be negative if one or more of the differences in the sum are

obtained, allowing unphysically negative DCS, to be obtained. Another approach was

introduced (Fliflet and McKoy, 1980; Itikawa, 2000; Rescigno et al., 1992) to calculate

the DCS via the scattering amplitude. This method always give positive results for

all angles. Both methods are discussed in Chapter 5 where a comparison of DCS

calculations for positron-H2O collision is performed.

3.3.1 Outer region wave function

One merit of the R-matrix method is that one does not need to calculate the outer

region wave function. However, there are occasions, for example when calculating the

annihilation parameter Zeff (see Chapter 4), that the exact form of the wave function

is required.

As mentioned above, eq (3.33) can be written in matrix form, and then the regular

solution

F =





F oo F oc

F co F cc



 ∼
r→∞





sin θ 0

0 0





and the irregular solution

G =





Goo Goc

Gco Gcc



 ∼
r→∞





cos θ 0

0 e−ψ





can be obtained, where F and G are both n by n dimentional matrices; F oo and Goo are

na by na matrices; F cc and Gcc are nc by nc matrices (nc = n− na); F
oc and Goc are
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3.4 Molecular R-matrix with pseudostates method

na by nc matrices; F co and Gco are nc by na matrices. The underline denotes matrix

here. Compared to equation (3.34), in the matrix notation we then have





Fo

Fc



 =





F oo F oc

F co F cc









xo

xc



+





Goo Goc

Gco Gcc









yo

yc





Compared to equation (3.31) and (3.32), we can write

xo ≡ k−
1

2

yo ≡ k−
1

2K

yc ≡ 0

The outer region trial function can be written as

F ∼
r→∞

k−
1

2 [F +GK] (3.43)

To find the normalisation of the wave function, one can transform the asymptotic form

involving S-matrix

Fij ∼
r→∞

1√
ki

(e−iθi − eiθiSij), (3.44)

which is easy to find the standard normalisation, to K-matrix asymptotic form:

Fij ∼
r→∞

2i√
ki(1 −Kij)

(sin θi +Kij cos θi) (3.45)

Taking a system with no long-range potential, like H atom, as an example, the asymp-

totic scattering solutions can be written as

Fij ∼
r→∞

2i√
ki(1 −Kij)

(jiδij + ηiKij) (3.46)

where ji is a Spherical Bessel function representing the regular solution and spherical

Neumann function ηi represents the irregular solution

jl(x) = (−x)l
(

1

x

d

dx

)l sinx

x
(3.47)

ηl(x) = −(−x)l
(

1

x

d

dx

)l cos x

x
(3.48)

3.4 Molecular R-matrix with pseudostates method

The standard close-coupling expansion used in the standard R-matrix method is incom-

plete since not all excited target states are included in the expansion and no continuum
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3.4 Molecular R-matrix with pseudostates method

states of the target are considered. This lack of completeness leads to a significant loss

of the polarisation effects for low energy collisions. Especially for non-polar species,

these polarisation effects contribute an important part to the collision processes. The

ab initio convergent close-coupling method (Bray et al., 2002) provides this complete-

ness by employing Sturmian functions as basis functions for electron-atom collisions,

but this method has so far only been applied to atoms with one active electron. There-

fore, the R-matrix with pseudostates (RMPS) method was introduced to augment the

close-coupling expansion by Bartschat et al. (1996), and can be used to treat targets

with many active electrons. The process of completing the close-coupling expansion

by use of pseudostates has proved to be a successful method in charged particle-atom

collisions. Gorfinkiel and Tennyson (2004, 2005) extended the application of pseu-

dostates to electron collisions from ionic and neutral molecular targets within the UK

R-matrix polyatomic code (Morgan et al., 1998). This procedure is known as the

molecular RMPS (MRMPS) method. Jones and Tennyson (2010) show the improve-

ment in polarisabilities calculated for various molecules by including pseudostates in

the calculation.

The MRMPS method is based on the use of a number of pseudostate wave func-

tions in the close-coupling expansion. The pseudostates are not true eigenstates of the

target, but represent a discretized version of the electronic continuum and also the

high-lying target states not included in the close-coupling expansion. The pseudostates

are normally obtained by diagonalizing the target electronic Hamiltonian described in

an appropriate basis of configurations. A set of appropriate configurations are added in

the CI expansion so that the pseudostates, used to represent target continuum states,

are able to reproduce the electron density of the ionized system. To do this an extra

set of orbitals, called pseudo-continuum orbitals (PCOs) are introduced to describe the

ionized electron (Gorfinkiel and Tennyson, 2004). Hence, two sets of configurations are

included in the CI expansion with the MRMPS method: the usual configurations in

which all the electrons occupy molecular orbitals; and a new set of configurations where

one-electron occupies a PCO.

An even-tempered basis set (Schmidt and Ruedenberg, 1979) of GTOs centred at

the centre of mass of the system is used to represent the PCOs, in which the exponents

of the GTOs are

αi = α0β
(i−1) i = 1, . . . , N (3.49)
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3.4 Molecular R-matrix with pseudostates method

which give different basis sets by choosing different values of α0 and β. The use of

different even-tempered exponents allows for convergence tests and helps avoid the

effects of pseudoresonances. Furthermore the basis gives the completeness of the close-

couping expansion as N approaches infinity (Schmidt and Ruedenberg, 1979). Although

smaller values of β produce a more complete set of pseudostates, it is more difficult to

avoid linear dependence. In order to include all the important target states involved in

the close-coupling expansion within the R-matrix box, parameters α0 and β need to be

chosen carefully. This means that in our method the amplitudes of the basis functions

employed to expand the MOs must vanish at the R-matrix boundary.

To include PCOs in the calculation, an extra orthogonalization procedure has to be

performed: Schmidt orthogonalization of the PCOs to the MOs and then symmetric

orthogonalized among themselves. During this step a deletion threshold, in the range

10−4 to 10−5, is used to delete near linear dependent pseudo orbitals. This gives a

target orbital set in terms of the target MOs and the PCOs. Target CSFs are now

represented by configurations of the form

(core)m(CAS)N−m

(core)m(CAS)N−m−1(PCO)1

In the MRMPS scattering calculation, to avoid further difficulty with the orthogonal-

izing procedure, it is necessary to ensure that the exponents

αPCOsi ≥ αcontinuumj ∀i, j, (3.50)

in which the largest exponents are deleted. This process does not misrepresent the

scattered particle due to the fact that the PCO basis provides short-range GTOs.

It is very important to choose appropriate L2 configurations when adding PCOs

for positron-molecule scattering. We should note that in contrast to the electron case,

the positron can occupy orbitals in the core. In principle, one would like to use the

configuration

(core)m(CAS)N−m(COs)1p

(core)m(CAS)N−m−1(PCOs)1(COs)1p

and the L2 function can be represented by

(core)m(CAS)N−m(core, CAS, PCOs)1p

(core)m(CAS)N−m−1(PCOs)1(core, CAS, PCOs)1p

Here the bold 1p denotes positron occupies the current orbitals. Note that for these
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3.5 The Partitioned R-matrix method

CSFs it is important to constrain the electronic wave function to have the correct spin

state. Several models were performed for the positron-C2H2 system as shown in chapter

7.

In the standard R-matrix calculations, the most challenging computationally step

is to diagonalise the (N+1) Hamiltonian matrix. Including the PCOs into the close-

coupling expansion can make this matrix very large. This leads to the need for the

partitioned R-matrix method.

3.5 The Partitioned R-matrix method

Calculations with the R-matrix method usually need all the eigenvalues and eigenvec-

tors of the inner region Hamiltonian to construct the R-matrices. However, when a

large number of the configurations are included in the calculations, the Hamiltonian

matrix becomes too large to be completely diagonalised as it would require too much

computational time and memory. Berrington and Ballance (2002) first introduced a

partitioned R-matrix theory, aimed to make the calculations more efficient, by using

only the lowest P solutions of the Hamiltonian matrix.

Usually, the R-matrix on the boundary can be written as equation (3.23) plus the

Buttle correction RB (Buttle, 1967) at the collision energy considered

Ril,i′l′(a,E) =

M
∑

k=1

ωilk(a)ωi′l′k(a)

Ek −E
+ δii′δll′R

B
il (3.51)

For calculations with a polyatomic target, we do not need to consider the Buttle cor-

rection. Equation (3.51) can be rewritten so that only some, P , of the solutions of the

M-dimensional Hamiltonian matrix are explicitly required. Now one quantity needs to

define: E0, which is an effective energy for the poles excluded when only the lowest P

solutions of Hamiltonian are taken. This is determined by

E0 =
(
∑M

l=1HI,I −
∑P

k=1Ek)

M − P
(3.52)

where the first sum gives the trace of the Hamiltonian matrix. Berrington and Ballance

(2002) then gave an expression for the partitioned R-matrix

Ril,i′li′ (a,E) =

P
∑

k=1

ωilk(a)ωi′lk(a)

(

1

Ek −E
− 1

E0 −E

)

+δii′δll′

(

sil
E0 −E

+RBil +RCil

)

(3.53)
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where RCil is the error correction term given by Berrington and Ballance (2002),

RCil =

nil
∑

j=Ji

(uilj(a))
2

(

1

Eilj −E
− 1

E0 −E

)

(3.54)

where Eilj is the energy of the continuum basis function uilj . This point is chosen

such that Eilj > EP , where EP is the highest R-matrix pole explicitly enclosed in the

summation in equation (3.53).

Several problems were carefully considered by Tennyson (2004) when the theory

described above was applied. One is for the definition of the effective energy E0. The

number of L2 configurations increases when CI representation is used for the target

molecule. Then the many high-lying L2 functions contribute to the value of E0 but not

to the boundary amplitude due to the fact that all diagonal elements of the Hamilto-

nian matrix are included without considering whether the configuration involved makes

any contribution to the boundary amplitude. Hence, only the configurations which

contribute directly to the boundary amplitude are used to define E0. Normally, the

Hamiltonian matrix is diagonally dominant to the calculation, so the lowest P diagonal

element can be associated with the lowest P R-matrix poles. Then the value of E0 can

be obtained by averaging those non-L2 diagonal elements of the Hamiltonian matrix,

Hilj,ilj, which do not belong to the lowest P diagonal elements.

Use of the partitioned R-matrix method also requires significant changes to the

outer region R-matrix code. This method has proved a very efficient way to treat large

ions and molecules, such as C−
2 (Halmová and Tennyson, 2008; Halmová et al., 2008)

and Li2 (Tarana and Tennyson, 2008).

3.6 Computational implementation

The programs used here for positron molecule scattering calculations are a modifica-

tion of the UK polyatomic R-matrix code (Morgan et al., 1998). As the theoretical

procedure described above, R-matrix computational calculations can be divided into

two stages: inner region and outer region calculations. The inner region polyatomic

suite is built on the ’Molecule-Sweden’ quantum chemistry codes of Almlof and Taylor

(1984). Figures 3.2 and 3.3 show respectively the inner region N and (N + 1)-electron

calculations. The figure 3.4 gives a flow diagram for the outer region calculations. The

inner codes comprises the following modules which are run in the sequence shown in
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3.6 Computational implementation

the figures:

SWMOL3 produces one and two-electron integrals from the given GTO basis sets.

SWSCF carries out the Hartree-Fock self consistent field (HF-SCF) calculation to

generate target molecular orbitals from linear combinations of atomic orbitals. SWSCF

used the integrals obtained from SWFJK.

GAUSTAIL evaluates the contribution of each integral from the R-matrix bound-

ary to infinity.

GAUSDELTA evaluates integrals of the Dirac-delta function (see Chapter 4). The

procedure are similar to GAUSTAIL gives but uses delta integrals over atomic orbitals

instead of a Coulomb integrals. This code was written by Dr. Jan Franz.

SWORD subtracts the ’tail’ integrals derived from SWMOL3 and then reorders

the integrals.

SWFJK builds up combinations of Coulomb and exchange integrals for the Fock

matrix needed by the SCF calculation.

SWEDMOS constructs orthogonal molecular orbitals and boundary amplitudes

for the continuum functions and GTO target functions. Schmidt orthogonalisation is

used to orthogonalise each continuum orbital with the target orbitals. Then symmetric

orthogonalisation is used to orthogonalise the continuum orbitals among themselves. A

threshold for deleting the continuum orbitals with very small eigenvalues of the overlap

matrix is required. SWEDMOS needs to run twice for MRMPS calculations to first

orthogonalise the PCOs and then orthogonalise the COs.

SWTRMO implements the four-index transformation from atomic to molecular

orbitals using the ordered integrals are generated by SWMOL3.

GAUSPROP produces the property integrals required by DENPROP.

CONGEN generates configuration state functions (CSFs) with appropriate spin

and symmetry coupling for performing the configuration interaction (CI) calculations.

The code also produces prototype CSFs for the target molecule and (N+1)-system. An

exotic particle flag (IPOSIT) needs to be set for positron runs. It should also be noted

that when choosing the molecular orbitals, the positron and electrons share a common

orbital set. The program also generates a phase factor for each target orbital, to ensure

the phases between the target and (N + 1)-electron system are consistent (Tennyson,

1996).

SCATCI carries out the CI calculation for target and (N+1)-electron system. It
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3.6 Computational implementation

Figure 3.2: Flow diagram for the inner region target calculation using the UK R-matrix package.

Red arrows indicate an input required by the scattering calculation. If NOs model is used, the

modules SWFJK and SWSCF are skipped.
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Figure 3.3: Flow diagram for the scattering calculation in the inner region. Red arrows indicate

inputs required by the outer region runs. The modules used in this thesis are SWINTERF,

RSOLVE, EIGENP, TMATRX and IXSEC.
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requires configurations generated by CONGEN and molecular integrals generated by

SWTRMO to construct the Hamiltonian matrix. Then it diagonalises the Hamiltonian

matrix to obtain the eigenvalues and eigenvectors. The prototype CSFs derived from

CONGEN to do the contraction helps speeds the calculation very significantly. Different

diagonalisation methods can be chosen; the ARPACK diagonaliser (Lehoucq et al.,

1996) is used to treat large Hamiltonian matrices in the partitioned R-matrix method

described above. Flag IPOSIT is also required to verify matrix elements for positron

runs. Furthermore, SCATCI can write out the sequential indices representing the

symbolic matrix elements (SME), which can be used for delta function calculations

to perform Zeff (see details in Chapter 4). This is important since SCATCI never

generalise the actual inner region N+1 electron wave functions.

ZEFFMAT calculates delta functions as described in Chapter 4. It reads in the

SMEs and eigenvectors derived from SCATCI and delta integrals generated by GAUS-

DELTA and SWTRMO to build delta functions or Zeff matrix. It should be noted

that ZEFFMAT does not process any 1-electron integrals or intergrals not associated

with the positron.

DENPROP generates properties such as permanent dipoles and polarisabilities

obtained from input target wave functions. The target properties are then used in the

outer region scattering calculation.

PSN produces pseudo-natural orbitals by diagonalising the density matrices pro-

duced by DENPROP. PSN can generate state-averaged NOs by choosing different

weights for the target states.

SWINTERF supplies the interface between the inner and outer regions. It requires

three input files obtained in the inner region calculations: boundary amplitudes from

SWEDMOS, eigenvalues and eigenvectors of the (N + 1)-electron Hamiltonian from

SCATCI, target properties from DENPROP. It produces two files with channel data

and R-matrix data.

RSOLVE requires the output files from SWINTERF and builds the R-matrix at

the boundary, solves the outer region scattering equation (3.27) and then constructs

fixed-nuclei K-matrices for specified energies. The R-matrix can be propagated to the

asymptotic region. Alternatively, a procedure can be chosen to propagate an exter-

nal wave function from the asymptotic region to the boundary. This procedure is

discussed in Chapter 4. Note that the R-matrix propagation and the wave function
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Figure 3.4: Flow diagram for the scattering calculation in the outer region. Red arrows indicate

outputs of required quanlitis.
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propagation cannot be performed at the same time otherwise an improper K-matrixes

given which result in incorrect eigenphases. The Zeff calculation is included as an

option in RSOLVE. It works by specifying the propagated wave function to obtain AEk

coefficients, and then reading in the delta function matrix generated in ZEFFMAT.

EIGENP diagonalises the K-matrices from RSOLVE and sums over all channels

(na) to get the eigenphase sums given in equation (3.38).

TMATRX generates the T-matrices from the K-matrix.

IXSECS computes the integral cross sections from the T-matrices produced by

TMATRX.

POLYDCS gives the rotationally elastic and inelastic DCSs for a variety of molec-

ular system with different symmetries (e.g. C2v, C3v). The codes was written by Sanna

and Gianturco (1998) POLYDCS requires K-matrix, rotational constant, dipole and

quadrupole moments and incident energies.
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Chapter 4
Positron Annihilation

4.1 Introduction

Normally, positrons are thermalized in atomic or molecular gases before annihilation

happens. At room temperature T=296 K, the energy of a positron is 0.037 eV. At this

energy, s-wave scattering gives the dominant contribution to Zeff .

Usually, the value of Zeff is larger than the actual number of electrons in target, Z,

due to the fact that the positron distorts the density of target electrons. One counter

example is the neon atom, which has 10 electrons per atom; the experimental value of

Zeff=5.99±0.06 (Coleman et al., 1975). As can be seen from table 4.1, for positron

annihilation with helium, the measurement gives Zeff=3.94±0.02 (Coleman et al.,

1975) at room temperature, compared to the theoretical result of Zeff=3.88±0.01

using Kohn variational calculations. It was found by Wright et al. (1983) for many

atoms and simple molecules that

Zeff ≈ (18 ± 3)α1.05±0.06, (4.1)

where α is the dipole polarisability of target. However, for many organic molecules, the

value of Zeff is very much larger than Z, e.g., Zeff=3160 for C2H2 and Zeff=11300 for

C4H10 as shown in table 4.1. Murphy and Surko (1991) gives an empirical relationship

for many organic molecules

lnZeff ≈ A

Ei − 6.8 eV
+B, (4.2)

where Ei is the ionization potential of target. A and B are constants.
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Table 4.1: Experimental values of Zeff for various atoms and molecules at room temperature

296 K.

species Z experimental Zeff

He 2 3.94a

Ne 10 5.99a

H2 2 14.6b

N2 14 30.5c

CO2 22 54.7d

H2O 10 319e

NO2 23 1090c

NH3 10 1600c

CH4 10 142d

C2H2 14 3160e

C2H6 18 660c

C3H8 26 3500c

C4H10 34 11300e

a Coleman et al. (1975), b Laricchia et al. (1987), c Heyland et al. (1982),

d Wright et al. (1985), e Iwata et al. (1995)

In the first Born approximation, the total scattering wave function can be written

as a plane wave which is used to represent positron multiplied by the undistorted target

wave function:

Ψ ∼
r→∞

exp (ik · rp)Φ(r1, . . . , rZ). (4.3)

So the Zeff=Z.

For the R-matrix method, in the no potential case, only one positron integrals are

allowed in the calculation. The Σ+
g symmetry contribution to Zeff can be obtained

as smoothly decreased results starting with Zeff=Z. Adding to the results calculated

with symmetries Πu, Πg and Σ+
u , constant value equal to Z can be obtained for positron

energies below the positronium formation threshold.

As discussed in Chapter 1, Zeff can be obtained from the elastic scattering wave

function. Calculated value of Zeff give an important indication of the accuracy of the

wave functions. Below the method used for these calculations is presented.
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4.2 Dirac delta functions

Substituting the inner region continuum wave function into equation (1.14), Zeff can

be expressed in terms of the coefficient AEk,

Zeff (E) =
∑

k,k′

N
∑

i=1

4π

kk′

∫

A∗
Ek〈ψk|δ(rp − ri)|ψk′〉AEk′ . (4.4)

where it is only necessary to integrate over the inner region since it is assumed that the

target wave function is zero outside this region. This expression (4.4) can be rewritten

as the following equation if the delta function matrices elements are donated by matrix

Zkk′ ,

Zeff =
∑

k,k′

4π

kk′
A∗
EkZkk′AEk′ (4.5)

Dr. Jan Franz modified program GAUSTAIL, which is used to evaluate the tail con-

tribution to each Hamiltonian integral, to give a new program GAUSDELTA. GAUS-

DELTA evaluates the Dirac-delta integrals instead of the usual Hamiltonian integrals

located in GAUSTAIL. Much of the remaining procedure is the same for the annihila-

tion calculation as the scattering ones for inner region runs. Therefore, SWTRMO can

still be used to give the four-index transformed integrals.

According to the formation of the Hamiltonian matrix given by Tennyson (1996),

the target wave function can be expanded as,

Φin =

M
∑

m=1

cimnηim(r1 · · · rZ) (4.6)

The integrals used to construct matrix elements of (N+1) Hamiltonian, can be ad-

dressed by the orbital numbers. Therefore, the Hamiltonian can be written in the

form:

Hinj,i′n′j′ = 〈φinuij|Ĥ|φi′n′ui′j′〉 =
∑

β

Dβ
inj,i′n′j′X(Iβij,i′j′) (4.7)

where Dβ are the coefficients multiplying each integral X; Iβ are the sequential indices

of the constructed symbolic matrix elements which point to the required location of

integrals. The subscripts i, n, j represent index of the symmetry of target states, index

of target states for each symmetry and index of continuum orbitals, respectively. Using

a Dirac delta functions instead of the Hamiltonian in equation (4.7), we can write

Zinj,i′n′j′ = 〈φinuij|δ|φi′n′ui′j′〉 =
∑

β

Dβ
inj,i′n′j′Y (Iβij,i′j′). (4.8)
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A new program ZEFFMAT was designed for calculating equation (4.8). The symbolic

matrix elements and coefficients set (Iβ,Dβ) are obtained from SCATCI (Tennyson,

1996) runs. The appropriate delta integrals obtained from SWTRMO are chosen by

these symbolic matrix elements. Figure 4.1 shows the flow diagrams for inner region

Zeff calculation.

It should be noted that matrix element Zinj,i′n′j′ requires no one-electron integrals

or two-electron integrals without a positron involved. After considering the coefficients

aijk and blk in equation (3.5) which are generated by normalising the Hamiltonian

matrix, one can get the matrix Zkk′ .

As mentioned in Chapter 3, usually there is no need to calculate outer region wave

functions in the R-matrix method. However, the exact form of wave function is required

to calculate Zeff and enters via the coefficient AEk.

4.3 Normalisation of elastic scattering wave function

The expression for the outer region wave functions has been introduced in Chapter 3.

The normalisation of this wave functions needs to be treated carefully. Hence, for cal-

culating Zeff , the accurate description of the external wave function and its derivatives

become an important part of determining the coefficients AEk.

To normalise the wave function, the density of the incident beam should be one

positron per unit volume.

For channels with the same l, diagonal elements of wavefunction solutions should be

the same. Hence, the normalisation of wavefunction should be
√

4π
k (1− iK). Therefore

the required wavefunction is in the form of

F = (1 − iK)(F +KG). (4.9)

Runge-Kutta-Nystrom integration (Brankin et al., 1989) is used to solve the second-

order differential equation (3.27). The RKN12(10)17M coefficients (Baker et al, 1999)

were used to integrate the outer region wave function to the boundary. It is necessary

to integrate the asymptotic expansion inwards from r = a′, typically 30 to 50 a0, as

the initial value to the R-matrix boundary at r = a. According to equation (3.20) or

(3.25), coefficients AEk can then be obtained straight forwardly. In principle, the two

expressions of AEk (equation (3.20) and (3.25)) should get the same results. However,

the term Ek − E in the denominator may leads to poles on Zeff . According to the
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Figure 4.1: Flow diagram for the inner region Zeff calculation.
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definition of R-matrix, these poles can be removed when equation (3.20) is employed

to compute AEk. So equation (3.20) is usually used to determine AEk. Sequentially,

value of Zeff can be obtained.

4.4 Annihilation tests

Initial tests of our Zeff theory applied it to positron annihilation with 1-electron

”atoms”. For these systems, the value of Zeff should behave as 1
1+k2 for the no inter-

action case and 1
1+K2 for annihilation in a square well potential for Σ+

g symmetry. The

form of wave function for positron interaction by a square potential well:

V (r) =







V0, r≤ a (inner region)

0, r>a (outer region)

gives a good test case. The time-independent Schrödinger equations are given by

−1

2
∇2ψ + V0ψ = Eψ, r ≤ a (4.10)

−1

2
∇2ψ = Eψ, r > a (4.11)

Inserting ψ = fl(r)
r Y m

l (θ, φ) into equations (4.10) and (4.11), we can obtain

f ′′l − l(l + 1)

r2
fl
r

+ 2(E − V0)fl = 0, r ≤ a (4.12)

f ′′l − l(l + 1)

r2
fl
r

+ 2Efl = 0, r > a (4.13)

The solutions of equations (4.12) and (4.13) are the spherical Bessel functions ĵl(Kr)

and ĵl(kr), respectively, where K2 = 2(E − V0) and k2 = 2E.

For the case of l = 0,

f0 =







A sinKr, r≤ a

B sin(kr + δ0), r>a

where δ0 is the s-wave scattering phase shift. Considering the boundary conditions for

a square potential well, we can obtain the matching equation and its derivative,






sinKa = C sin(ka+ δ0)

K cosKa = Ck cos(ka+ δ0)

where C = B
A . The s-wave phase shift can be easily obtained by solving k tanKa =

K tan(ka+ δ0) which gives

δ0 = arctan(
k

K
tanKa) − ka (4.14)
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The normalization factor C is obtained as

C = sinKa sinka+
K

k
cosKa cos ka. (4.15)

So the wave function used to calculate Zeff for s-wave scattering by a square potential

well is

f0 = (sinKa sin ka+
K

k
cosKa cos ka)(sin kr +K00 cos kr) (4.16)

where K00 is the K-matrix with l=0. Substituting the wave function into equa-

tion (3.20) or (3.25) to obtain Ak coefficients, allows Zeff to be calculated. A Zeff

calculation for an H atom in a square well potential at energies below the positronium

formation threshold is shown in figure 4.2.

Figure 4.2 shows the no potential and square well potential calculations of Σ+
g

symmetry using the Zeff theory described above for positron-H annihilation in terms

of incident positron energies. For no interaction calculation, the K -matrix and phase

shift are equal to zero. By adding the Zeff values of Πu, Πg and Σ+
u symmetries,

a constant value of one is obtained for the no interaction case and 0.87 if the square

well potential V0=-2 eV for incident energy below the positronium formation threshold.

This supports the validity of the formulation of wave function. The pole in the results

for Zeff with square-well potential arises from the K-matrix poles at 2.6 eV.

More models are calculated to test positron annihilation with H atom: static model,

SP model and close-coupling models with MRMPS method (see fig 4.3). Calculated

Zeff for scattering in the static potential are even smaller than the number of electrons

in the H atom. One gets better results for calculations with the MRMPS method than

static and SP model. As higher pseudo-continuum orbitals are included in the target

representation using the MRMPS method, better results are obtained, particularly at

lower energies. In the outer region only one target state is included in this calcula-

tion. The R-matrix radius was choosen as 13 a0. The wave function for positron-H

calculations was propagated from 30 a0 to the R-matrix boundary 13 a0 using Runge-

Kutta-Nystrom integrator.

Zeff for positron-H+
2 annihilation is also calculated in the static and SP level. It

gives the similar results as positron-H calculations. This becomes another touch-stone

calculation for testing our Zeff codes.

Gribakin and Ludlow (2002) reported that the values Zeff converge as 1/(l + 1
2),

where l is the partial-wave quantum number. Details about it is shown in Chapter 8.
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Figure 4.2: Zeff for positron-H annihilation of Ag symmetry with no potential and a square-well

potential as a function of positron scattering energy.
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Figure 4.3: Zeff for H atom calculated for several methods as a function of the collision energies.
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Figure 4.4: Zeff for H atom in terms of J .

Enlightened by this behaviour of Zeff , we tried to fit the Zeff values based on models

with MRMPS method using one target state only. As shown in figure 4.4, the values

of Zeff at 0.1 eV using different models with MRMPS method from s-PCOs model to

spdfg-PCOs model are fitted in terms of 1/(J + 1
2 ) where J is the value of highest l

included in the PCO expansion. It gives fitted Zeff=6.45 at zero energy, compared

to previous calculated results of 8.39 using Kohn variational calculations (van Reeth

and Humberston, 1998) and 7.96 using many-body theory calculations (Gribakin and

Ludlow, 2004).

4.5 Conclusion

A new code used to calculate annihilation parameter Zeff is presented in this Chapter.

This code gives the accurate form of outer region wave function for positron annihilation

with atoms and molecules. Tests for positron-H annihilations at energies below the

formation threshold are reported with no potential, square-well potential and various

multipole potential models. Calculations for positron annihilation with H2 molecule is

reported in Chaper 8.
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Chapter 5
Positron collisions with water

5.1 Introduction

The study of interaction of charged particles with polar atoms and molecules plays an

important role in many fields in astrophysics and radiation biological physics. Water is

one of the most abundant substance in the universe and is the most significant compo-

nent in living organisms. This molecule is very important for astrophysics, atmospheric

physics and biophysics research. Humankind has been trying to understand water for

more than two thousands years. As far back a 700 BC, water was regarded as one of

the five significant elements in the whole natural world.

Calculations on electron collisions with water molecules using the R-matrix method

(Faure et al., 2004a,b) have been reported, in which the differential cross sections and

momentum transfer cross sections are in excellent agreement with corresponding mea-

surements (Čuŕık et al., 2006)). The most recent comparison Zhang et al. (2009) of total

cross sections between theory and new experiment (Khakoo et al., 2008) on electron-

water collision also gives good agreement at energies up to 7 eV. The vibrationally

elastic and rotationally inelastic total cross sections gives a very large forward scat-

tering peak because of the big permanent dipole moment of the target. This causes

difficulties with performing low-energy collisions in experiments. Several calculations

(Baluja and Jain, 1992; Gianturco et al., 2001; Nishimura and Gianturco, 2004) on

positron-water scattering have been performed. The single center expansion (SCE)

calculations (Gianturco et al., 2001) are used to compare with our results. A num-
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Figure 5.1: The equilibrium nuclear condifuration of water

ber of measurements (Sueoka et al., 1986; Kimura et al., 2000; Zecca et al., 2006; Beale

et al., 2006) have been carried out on positron-water collisions and gave rather different

elastic cross sections.

Unlike positron collisions with non-polar molecule (Tennyson, 1986; Danby and

Tennyson, 1988, 1990b, 1991), the low-energy cross section for collisions with strongly

polar molecule are dominated by the forward scattering because of the long-range nature

of the dipole potential. Although more partial waves must be included in the positron

wavefunction expansion for strongly polar systems, the truncation in the expansion can

be dealt with by using the dipole-Born approximation. Electron collisions with polar

molecules (Lane, 1980; Padial et al., 1981; Gianturco and Jain, 1986; Morrison, 1988)

also have this problem. For testing this, two calculations were performed: direct Born

correction to the cross section and the Born correction from the frame transformation as

implemented in the program POLYDCS (Sanna and Gianturco, 1998). This procedure

is discussed in section 5.4. At energies approaching the rotational excitation thresholds,

all thresholds are considered to be degenerated based on the adiabatic nuclei rotation

(ANR) approximation we use.

In this chapter, elastic cross sections are reported for the incident positron energy

range 0.025-10 eV. The results of R-matrix calculations using state-averaged natural

orbitals model (NOs) are compared with the single center expansion (SCE) calculations

(Gianturco et al., 2001) and the experimental results (Sueoka et al., 1986; Kimura et al.,

2000; Zecca et al., 2006; Beale et al., 2006).

66



5.2 Target calculation

5.2 Target calculation

The water molecule is polar. It belongs to the C2v point group, and its X 1A1 ground

state has the electronic configuration 1a2
1 2a2

1 3a2
1 1b2

1 1b2
2. We performed fixed-

nuclei calculations at the experimental molecular geometry of H2O (see Figure 5.1),

rOH=1.81 a0 and ĤOH=104.5o (Csaszar et al., 2005).

The target wavefunctions of H2O molecule are calculated at the self-consistent field

(SCF) level using Gaussian-type orbitals (GTOs). We used two different GTO basis sets

for H and O atoms of target. One of them we chose was double zeta plus polarization

(DZP) of Dunning Jr (1970) as the GTO basis set for O and triple zeta (TZ) basis

of Dunning Jr (1971) for H with an added diffuse s function and two p functions

(Gorfinkiel et al., 2002), which gives an orbital space of (19,6,12,3), i.e. 19 molecular

orbitals of a1 symmetry, 6 of b1, 12 of b2 and 3 of a2 and (3,1,1,0) of them are occupied

orbitals in the ground state of target and the rest are virtual orbitals. Within the SCF

calculation, this basis sets yields a dipole moment of 1.983 D; it gives an improved

value of 1.897 D with the natural orbital model described below, which is close to the

experimental data of 1.854 D (Suresh and Naik, 2000). A smaller DZP basis set was

also tested and gives (15,5,10,3) for the total target orbital space. The later basis set

gives a target dipole moment of 1.986 D. Calculations presented below were performed

with the larger basis. Table 5.1 shows the vertical excitation energy calculated using

NOs model and compares them to previous studies on water (Gorfinkiel et al., 2002;

van Harrevelt and van Hemert, 2000; Winter et al., 1975). The NOs model we used

here is based on a configuration interaction calculation for singlet states. In this model,

we obtained state-averaged natural orbitals (NOs) by performing a singles and doubles

configuration interaction (SD CI) calculation from the completed active space (CAS) of

(2a1, 3a1, 4a1, 5a1, 1b1, 2b1, 1b2)
8. In our scattering calculation, we selected the lowest

singlet states of each symmetry in the close-coupling expansion. The NOs model gives

a good representation for all the target states in the calculation. We performed several

tests on the state averaging NOs and chose the best case of lowest singlet state of each

symmetry X1A1 state, 1B1,
1B2 and 1A2 with weights 40, 5, 5 and 5, respectively, which

gives the best threshold energy and dipole moment. When the full CAS S CI and CAS

SD CI models were used to represent the target states, they gave similar resutls.
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Table 5.1: Vertical excitation energy for H2O target states. N is the number of configurations.

Basis 1 and basis 2 refer to the two different basis sets which give orbital space of (19,6,12,3)

and (15,5,10,3) respectively, based on the NOs model. Compare to: (A) Gorfinkiel et al. (2002),

(B) van Harrevelt and van Hemert (2000) and (C) Winter et al. (1975)

State N Vertical excitation(eV)

C2v Basis 1 Basis 2 Basis 1 Basis 2 A B C

1A1 5144 6588 −76.107 −76.107 −76.092 − −
1B1 4964 6348 9.88 7.54 7.51 7.63 7.49

1B2 5072 6432 15.86 13.52 14.02 11.11 10.0

1A2 4910 6210 12.32 10.80 13.12 9.60 −

5.3 Scattering calculation

The scattered positron is described by continuum orbitals using GTOs basis set with

l up to g wave placed at the centre of mass of the target molecule. Three different

R-matrix radii were tested for scattering calculation based on the static and static plus

polarization model which are explained below: 10 a0, 13 a0 and 14 a0. Among these

tests, R-matrix radius of a = 10 a0 gives the stablest eigenphase below the positronium

formation threshold. Therefore, all calculations present in next section were performed

within R-matrix radius of a = 10 a0. The GTOs basis set for R-matrix radius of

a = 10 a0 is the same as the set used for electron–water calculation using the R-matrix

method (Faure et al., 2002).

In order to find out how sensitive of polarization effects contributing to positron–

water colision using close–coupling expansion, we carried out scattering calculations

in three different models: static model, the static plus polarization (SP) model and a

close-coupling model based on the use of Natural orbitals (NOs). In the static model

no relaxation of the target is allowed but the positron can occupy both target occupied

and virtual orbitals as well as continuum orbitals of each symmetry.

In the SP model, one electron excitations of the target are added to allow for short–

range electron–positron correlation effects into full virtual states. In this calculation,

125 singlet excited target states were generated, 49 states of A1 symmetry, 24 of B1,

39 of B2 and 13 of A2.
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In both methods, the positron was allowed to occupy all continuum, all frozen and

active target orbitals.

5.4 Results and discussion

Due to the strongly dipolar nature of water, the dipole Born approximation was used

to augment the total collision cross sections which compensates for the truncated par-

tial wave contribution. Two different methods were performed to test this: direct

Born correction to the cross section and the Born correction from the frame trans-

formation as implemented in the program POLYDCS (Sanna and Gianturco, 1998).

The two approaches are compared in Figure 5.2. The frame-transformation approach

(POLYDCS), which we used for performing our rotationally resolved cross sections,

gave similar results to the direct Born correction approach above 1 eV. At lower energy

region, the frame-transformation approach is deemed to more reliable following the

study of Okamoto et al. (1993) who showed that DCS can be computed by the ground

rotational state of target molecule at very small angle.

Results for elastic integral cross section for different models are shown in Figure 5.3

in the incident energy range 0.25-7 eV. It can be seen from this figure that the Born

correction leads to a very substantial contribution to our calculation, particularly at low

collision energies. Due to the strong diple moment of molecule water, there is not much

difference among our static, SP and NOs model results. The results are also compared

with the single centre expansion (SCE) calculation of Gianturco et al. (2001), which

are also performed at the SP level. However, their calculation did not include the Born

correction, although it gets similar results to our Born-corrected results. This is because

their SCE calculation includes many partial waves in the wavefunction expansion to

get satisfactorily converged results.

The three different models we used to carry out differential cross section (DCS)

give rather similar results due to the insensitivity to polarization effects. Here we only

report Born-corrected results of DCS under using NOs model. The elastic (rotationally

summed) differential cross sections are plotted for collision energy of 0.25 eV and 2 eV

in Figure 5.4, 5 eV and 10 eV in Figure 5.5 The DCS are strongly peaked like electron

water scattering in the forward direction, due to the dipole. Apparently, from these

three figures we can see that the DCS are dominated by the dipolar (0-1) rotational
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transition. This has a significantly different behaviour from the electron-water results

(Faure et al., 2004b) since for electron case, both the ∆J = 0 component and ∆J = 2

component give a crucial contribution to the DCS results.

Figure 5.6 presents the comparison between our rotationally summed cross section

(Born-corrected NOs model) and experimental cross sections obtained by (Sueoka et al.,

1986; Kimura et al., 2000; Zecca et al., 2006; Beale et al., 2006). Our theoretical results

lie higher than the three of four experimental results below 7 eV which indicates the

low angle scattering may be missed in determining contributions to cross sections in

these experiments. The experiment whose measured cross section is higher than our

calculated cross section corrected the forward scattering based on the measurment of

Sueoka et al. (1987), using a procedure of unmodified dipole-Born approximation. This

procedure appears to overestimate the forward scattering in the lower energy region.

One of above measurements (Beale et al., 2006) gives an experimental acceptance

profiles. We used these to estimate forward scattering contribution to the cross sections

at low energies. This procedure is discussed in the next section.

Figure 5.7 gives the rotationally resolved integral cross sections (ICS) for collision

energies in the energy range of 0.1-10 eV, and then compares with the equivalent integral

cross sections for electron-water collisions of Faure et al. (2004b). Cross sections for

electron collision have the same value as positron’s at energies near zero. The difference

increases with increasing energy and that indicates the contribution of polarization

effects to electron and positron scattering. It also can be seen from this figure that the

cross sections are dominated by the ∆J = 1 transition as DCS.

Momentum transfer cross sections are presented as a function of collision energy

in Figure 5.8, which are also compared with the equivalent cross sections for electron

case (Faure et al., 2004b) whose results have good agreement with measure values by

Cho et al. (2003). As is expected, the momentum transfer cross sections are higher for

electron than for positron particularly at low projectile energies.
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Figure 5.2: Comparison of the dipole Born corrections between the frame transformation cor-

rection by program POLYDCS (Sanna and Gianturco, 1998) and direct Born correction of the

elastic cross section by Baluja et al. (2000) . The difference is defined as percentage difference

between POLYDCS and the simple Born calculation. This calculation based on NOs model which

is explained in detail below.
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Figure 5.3: Elastic (rotationally summed) integral cross sections for positron-water collisions

for several theoretical models with R-matrix method and previous study of Gianturco et al.

(2001)
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Figure 5.4: Differential cross section (DCS) for positron-water collisions at 0.25 eV(upper) and

2 eV (lower). The solid line gives the total DCS while the other give the rotationally resolved

partial state-to-state DCS.
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Figure 5.5: Same as Figure 5.4 except incident energies at 5 eV(upper) and 10 eV(lower)

respectively
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Figure 5.6: Comparison of experiment with theory for the elastic (rotationally summed) integral

cross sections for positron-water collisions as a function of the collision energy.
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collisions as a function of the collision energy compared to the equivalent cross sections for

electron collisions Faure et al. (2004b). Also shown are the rotationally resolved cross sections

for positron collisions.
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Figure 5.8: Elastic (rotationally summed) momentum transfer cross sections for position (this

work) and electron (Faure et al., 2004b) water scattering as a function of the collision energy.
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Table 5.2: Coefficients for fit function given by eq. (5.1) used to represent the angular behaviour

of the positron (and electron) DCS in the forward region. Angles are given in degrees for a

DCS in Å2/◦. A separate fit is given for each collision energy, E.

electron positron positron

E 7 eV 7 eV 10 eV

C0 0.918729 −0.292103 −0.578577

C1 0.0717311 0.033907 0.129589

C2 0.383493 0.386788 0.265902

C3 −0.00129725 −0.0000131518 0.0000463739

5.5 DCS correction

As mentioned above, experiments on positron-water collision gave very different cross

sections to our calculation and, even to each other, due to the missing or overestimate

consideration of low angle scattering. Among these measurements, Beale et al gives

the acceptance profiles, which depends on the details of the apparatus and method

used in the measurements. The corrected TCS for electron are similar to positron case,

provided the acceptance profiles x(θ) is the same in both cases, which is revealed that

fitting electron case is valid for water.

The partial-wave expansion used in our R-matrix calculations does not converge

in the fixed-nuclei approximation due to the long-range dipolar interaction. Based on

the reality that the charged particle does not penetrate the wave function of the target

molecule for high partial wave, we used dipole Born approximation to deal with this

problem. We found a polynomial fit to our calculated differential cross section which

gives a good representation of the low angular data,

F (θ) = C0 +

3
∑

i=1

Ciθ
i (5.1)

Several different forms of F (θ) were tested, and among them we chose one fit func-

tion that gives closest angular behaviour of the low angle DCS, Table 5.2 gives the

coefficients of the fits for the case of water. The residuals are less than 1% below 10◦.

The fit function equation (5.1) was then integrated analytically in whole range 0-180

degree.

σcorr =

∫

x(θ)F (θ)sinθdθ (5.2)
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Figure 5.9: A comparison of theory Baluja et al. (2007)with uncorrected experiment Sueoka

et al. (1986); Kimura et al. (2000); Zecca et al. (2006); Beale et al. (2006) and corrected one

for integral cross sections for positron-water collisions as a function of the collision energy.

where x(θ) = e−λθ
2

is the angular acceptance profile from Beale et al. (2006), and

λ = 0.0206 at 7 eV, 0.0266 at 10 eV. In practice, x = 0 for θ greater than 14o. For

positrons, the correction at 7 eV is σcorr = 2.346 Å2 which is very close to the corrected

electron differential cross sections data given by Faure et al. (2004b), 2.340 Å2.

Figure 5.9 shows the comparison of our theoretically calculated total cross sections,

published experimental results (Sueoka et al., 1986; Kimura et al., 2000; Zecca et al.,

2006; Beale et al., 2006) and our corrected Beale et al. (2006) results. We can see

that the corrected data give better agreement than uncorrected results. The error bars

for corrected experimental results are the same as original experimental results (Beale

et al., 2006) and therefore must be on underestimate of the error. Figure 5.9 also shows

the latest measurement performed by Makochekanwa et al (2009) which gives the grand

total cross sections (GTCS) and the ones with the forward scattering correction. This

corrected measurement lies above our calculated results at energies below 10 eV.

5.6 Conclusion

We report rotationally resolved elastic differential cross sections, integral cross sections

and momentum transfer cross sections for positron collision with polar molecule water
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at incident energies below 10 eV. Unlike positron scattering with apolar molecules, our

results are insensitive to the models we used and degree of polarization included in our

calculations. The Born correction contributes an important part to the elastic cross

sections, particularly at lower energies.

There is excellent agreement between our results using static plus polarization (SP)

and NOs models, and the SCE results which are also performed at the SP level. Due to

the large permanent dipole nature of the target, there is therefore not much difference

between our static, SP model and Natural orbital model results. We compared our

results with four published measurements (Sueoka et al., 1986; Kimura et al., 2000;

Zecca et al., 2006; Beale et al., 2006) at collision energies below the positronium for-

mation threshold. Given the fact that the positron-water collision is strongly forward

peaked, it’s difficult to perform this process in experiment at lower energies. Three

of these four lie below our calculated results. We believe none of them did the for-

ward scattering correction and therefore miss significant part of the total cross section.

Although Kimura et al. (2000) gave the correction to low angle scattering by measure-

ment Sueoka et al. (1986), it appears to overestimate the forward scattering correction

to the cross sections. By contrast, our theoretical results are more reliable for positron

collisions with dipolar molecule. We also calculated differential cross sections (DCS)

in the positron energy range 0.25-10 eV using the POLYDCS program of Sanna and

Gianturco (1998). This program takes our K-matrices as input and calculates elas-

tic and inelastic rotational DCS which includes contributions for all rotor states up

to J=5 which yields converged results. There is no other theoretical or experimental

data available to compare our DCS results. Momentum transfer cross sections for the

vibrationally elastic scattering of positron from water are also reported and compared

to corresponding electron-water scattering (Faure et al., 2004b). In section 5.5, we give

a theoretical correction to measured integral cross section (Beale et al., 2006) at low

energies, based on given experimental angular acceptance profiles obtained by the same

experimental group. Given the fact that no experimental DCS has been available so

far, we correct the integral cross sections based on our calculated DCS for energies

below 10 eV. The corrected results give better agreement with our theoretical results

(Baluja et al., 2007) than the uncorrected ones. We suggest that our calculations give

the most reliable results for positron collisions with water molecule at low energy.
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Chapter 6
Positron collisions with H2 molecule

6.1 Introduction

H2, the simplest molecule and serves as a benchmark system. Collisions with positrons

and H2 have been well studied in theory ( Danby and Tennyson, 1990b; Armour et al.,

1990; Gibson, 1992; Reid et al., 2004; Arretche et al., 2006; Mukherjee and Sarkar,

2008; Zhang et al., 2009) and experiment (Hoffman et al., 1982; Charlton et al., 1983;

Deuring et al, 1983; Zecca et al., 2009). It is hard to model the polarization effects

between the scattered positron and the electrons in the H2 target due to the attractive

nature in the collision. Unlike positron collisions with dipolar molecule, polarization

effects play a dominant role in collisions with non-polar molecule. The calculations are

particularly sensitive to the degree of polarization for energies below the positronium

formation threshold at 8.63 eV.

The MRMPS method has been applied to solve electron impact with H2 and H+
3

(Gorfinkiel and Tennyson, 2004, 2005), C−
2 (Halmová et al., 2008) and Li2 (Tarana

and Tennyson, 2008), which are found to lead to an excellent target polarizability and

polarization potential. In this chapter, the MRMPS method is used to treat positron

collisions with H2 molecule at energies up to 10 eV. As part of this study, polarizabilities

of H2 were calculated using different models. The model which gives best polarizability

was chosen to carry on scattering calulations. Comparison are made between our

MRMPS calculations method and previous calculations performed by Armour et al.

(1990); Arretche et al. (2006); Mukherjee and Sarkar (2008); Tennyson (1986); Danby
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6.2 Calculations

and Tennyson (1990b); Gibson (1992); Reid et al. (2004) at low energies. Tennyson

(1986) and Danby and Tennyson (1990b) are earlier R-matrix calculations that did

not include enough short-range representation of polarization in Σ+
g symmetry, which is

very important for lower energies cross sections. It seems that Gibson (1992) also had

this problem in their calculation. Calculation with Kohn variational method of Armour

et al. (1990) gave eigenphase sums and annihilation parameter below 13.61 eV. Arretche

et al. (2006) presented the static and static plus polarisation calculation using Schwinger

multichannel method. The most recent theoretical calculation (Mukherjee and Sarkar

(2008)) reported integral cross sections at energies from 1 eV up to 1000 eV. This is

the only available theoretical run that gave intermediate-energy results for positron-H2

collision. Zhang et al. (2009) also reported scattering lengths.

Positron-H2 collisions were also studied by some experimental groups (Hoffman

et al., 1982; Charlton et al., 1983); these studies gave very similar cross sections to

each other. The most recent measurement performed by Zecca et al. (2009) give very

different integral cross sections from previous experiments below 10 eV. However, these

three measurements and another attempt (Deuring et al, 1983) which gave the integral

cross section from 8 eV to 400 eV, are in excellent agreement at energies above 10 eV.

Among these measurements, only Zecca et al. (2009) presented cross sections below

1 eV. Although positron-H2 collisions have been well studied, we still chose it as a

touch-stone calculation for testing the MRMPS method employed to treat positron

calculations. Comparisons are also made with simple calculations without MRMPS

methods for eigenphase sums and integral cross sections at collision energies below the

positronium formation threshold.

6.2 Calculations

We start from simple models for positron-H2 calculation: the static model, static plus

polarization model and close-coupling model without the MRMPS method. For the

target calculation, we used the same basis set that Gorfinkiel and Tennyson (2005)

employed, the 6-31 G∗∗ basis set of Hariharan and Pople (1973).

As mentioned in the theory chapter, we started by building Hartree-Fock molecular

orbitals (MOs) for H+
2 . The PCOs exponents generated with β = 1.4 and α0 = 0.17

after several tests with α0 = 0.16, 0.18, 0.19. We performed calculations with PCOs
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basis from (10s, 10p 6d) orbitals up to (10s, 10p 6d, 6f, 6g, 6h) orbitals, labelled as spd-

PCOs, spdf-PCOs, spdfg-PCOs, spdfgh-PCOs, respectively. To avoid problems with

linear dependence, a deletion threshold δthrsh−tar must be set at an appropriate value

for orthogonalizing the PCOs to the MOs. Tests were performed for the spd-PCOs case

and by choosing optimal β, α and δthrsh−tar value for our calculations. Comparisons

of polarizability with β = 1.4 and various α with δthrsh−tar chosen as 2 × 10−4 are

shown in table 6.1. Apparently, the polarizability given by the target calculation with

β = 1.4 and α0 = 0.16 are batter than other tests. These results are compared to given

accurate values from Augspurger and Dykstra (1988). However, scattering calculation

for PCOs with β = 1.4 and α0 = 0.16 shows less stable than for PCOs with β = 1.4 and

α0 = 0.17. We carried out target calculations with β = 1.4 and α0 = 0.10 for different

numbers of orbitals in the PCOs, see table 6.2. The α0 = 0.10 target was used in an

attempt to perform scattering calculation with R-matrix radius of 13 a0. Because of

the larger radius, bigger continuum basis have to be used in the scattering calculations.

Although the target runs with β = 1.4 and α0 = 0.10 give good polarizabilities, it gives

unstable eigenphase sums in the outer region calculation. To sum up, we choose the

target runs with β = 1.4 and α0 = 0.17, which Gorfinkiel and Tennyson (2005) used to

their electron-H2 calculations with MRMPS method. All results shown in next section

are with these values. In the case of β = 1.4 and α0 = 0.17, tests on different PCOs

were performed, see table 6.3.

The target configurations used in our calculations with spd-PCOs basis in the irre-

ducible representations of D2h were:

(1-3ag 1b2u 1b3u 1-2b1u 1b2g 1b3g)
2

1a1
g(4-20ag 2-8b2u 2-8b3u 1-5b3u 3-10b1u 2-6b2g 2-6b3g)

1

where the orbitals in the first line are MOs and in the second line the PCOs placed

in brackets. The target state distributions for different spd-PCOs basis are shown in

figure 6.1, compared to a single CI calculation. For more complex PCOs, a greater

number of PCOs are included in the calculations. For example, the spdfgh-PCOs

calculation has the same MOs as spd-PCOs case but the PCOs were:

1a1
g(4-28ag 2-26b2u 2-26b3u 1-12b3u 3-28b1u 2-13b2g 2-13b3g)

1

It’s not easy to choose the three parameters (α, β, δthrsh−tar) because there is

another deletion threshold δthrsh−scat which has to be chosen carefully for the orthog-

onalization of the continuum GTOs to target orbitals for scattering calculation. For
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Table 6.1: Polarizabilities of H2 for the basis of spd-PCOs with β = 1.4 for different α0.

Accurate values are from Augspurger and Dykstra (1988)

α0 α‖ α⊥

0.16 6.236 4.612

0.17 6.228 4.586

0.18 6.202 4.550

0.19 6.202 4.509

Accurate value 6.445 4.507

Table 6.2: Palarizabilities of H2 for the basis of PCOs with β = 1.4 and α0 = 0.10.

PCOs α‖ α⊥

(10s,10p,6d) 6.347 4.733

(12s,12p,6d) 6.345 4.735

(13s,13p,6d) 6.344 4.731

calculations with β = 1.4 and α0 = 0.17 for PCO basis, δthrsh−tar = 2 × 10−4 and

δthrsh−scat = 2 × 10−7 gives smoother integral cross sections than other choices. These

two deletion thresholds are different for various PCOs basis sets chosen.

We performed scattering calculations with spd-PCOs, spdf-PCOs, spdfg-PCOs and

spdfgh-PCOs corresponding to the target calculations. The scattered positron is de-

scribed by continuum Gaussian type orbitals with l up to g wave. Functions with largest

exponent for the continuum orbitals (Faure et al., 2002) were deleted and (6s, 7p, 7d,

7f, 6g) was left. Calculations with PCO up to d wave carried with radius at a = 10 a0,

and a = 13 a0. Comparisons of calculated integral cross sections for Σ+
g symmetry for

Table 6.3: Polarizabilities of H2 for the basis of PCOs with β = 1.4 and α0 = 0.17.

PCOs α‖ α⊥

spd 6.228 4.586

spdf 6.249 4.596

spdfg 6.249 4.597

spdfgh 6.266 4.595
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Figure 6.1: Target state distribution of Σ+
g symmetry for H2 with β = 1.4 and deletion threshold

δthrsh−tar = 2 × 10−4

various R-matrix radius, PCOs basis and deletion thresholds are made in figure 6.2.

These calculations were performed with spd-PCOs model. Results of eigenphase and

cross sections for a = 10 a0 are more stable than calculations with a = 13 a0, so we

used this radius for the rest of calculations. Although there is no significant difference

among these calculations below the positronium formation threshold, the parameters

β = 1.4, α0 = 0.17, δthrsh−tar = 2 × 10−4 and δthrsh−scat = 2 × 10−7 give smoother

cross sections than other values.

As mentioned above, the deletion threshold for orthogonalizing between COs and

target orbitals was set to 2×10−7 for all scattering calculations except those calculations

with spdfg-PCOs and spdfgh-PCOs. Because δthrsh−scat = 2 × 10−6 gives smoother

eigenphase sum and corresponding cross sections than choosing δthrsh−scat = 2 × 10−7

for the later two PCOs. 15 target states were included in the close-coupling expansion

for spd-PCOs case, 22 for spdf-PCOs, 31 for spdfg-PCOs and 31 for spdfgh-PCOs.
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Figure 6.2: Cross sections of Σ+
g symmetry with various R-matrix radius, PCOs models and

orthogonalizing deletion thresholds.

6.3 Results and discussion

Figure 6.3 shows the comparison of eigenphase sums for static model, SP model, close-

coupling without MRMPS model and close-coupling with MRMPS model for Σ+
g sym-

metry. Apparently, results with the MRMPS method are much better than those for

a SP calculation, which are without PCOs. It can be seen that only the static model

gives negative eigenphase for the entire energies considered. Conversely, the eigenphse

as for calculations with pseudostates stay positive at all energies below 10 eV. The

SP model and close-coupling without MRMPS model eigenphases become negative at

about 2.5 eV. However, the eigenphase given by non-pseudostate close-coupling model

are higher than SP model at higher energies.

Figure 6.4 gives the eigenphase sums for Σ+
g symmetry, in radians, for different

PCOs models used for representing pseudostates in comparison with Armour et al.

(1990)’s theoretical results for energies up to 10 eV. All the calculations with PCOs

shown in this figure employed PCOs basis with β = 1.4 and α0 = 0.17. As can

be seen, the calculations with spdfg-PCOs and spdfgh-PCOs give very similar results

to each other. It appeares that our eigenphase calculated with the MRMPS method

give converged results at low energies. Our results with MRMPS method show good
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Figure 6.3: Comparison of eigenphase sums for Σ+
g symmetry for static model, SP model,

close-coupling without MRMPS model and close-coupling with MRMPS model.
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Figure 6.4: Comparison of eigenphase sums for Σ+
g symmetry with various PCOs models in the

function of energies.
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Figure 6.5: Comparison of eigenphase sums for Πu,Σ+
u and Πg symmtries, respectively.
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Figure 6.6: Total elastic cross sections for various models without and with MRMPS method.

agreement with Armour et al. (1990)’s eigenphase sums at lower energies, and are higher

than Armour et al. (1990)’s results at incident energies above 5 eV. This is because only

the lowest partial wave is included in their calculations. Similar behavior of eigenphase

sums are given by Πu, Σ+
u , Πg symmetries in the function of energies, see figure 6.5.

Figure 6.6 presents total elastic cross sections given by various R-matrix models

at energies below 10 eV. Obviously, our static and SP calculation are awful as the

eigenphases above suggested. The static model does not even give forward-peaking be-

haviour at lower energies. At energies above 1.6 eV, total elastic cross sections for static

model become larger than the MRMPS calculation with spdfgh-PCOs. Close-coupling

without MRMPS calculation is better than SP model, but still much smaller at lower

energies than calculations with MRMPS method. It turns out the polarization effects

modelled by the MRMPS calculation play an important role for positron-H2 colisions.

Cross sections for calculations using MRMPS method with various PCOs give similar

values. However the calculations with spdf-PCOs is better than the calculation with

spd-PCOs. Judging by the eigenphase sum, the integral cross sections are converged

for calculations with higher PCOs included.

Comparisons of our total elastic cross sections performed with MRMPS method

with various available theoretical calculations are shown in figure 6.7. All studies give
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Figure 6.7: Calculated total elastic cross sections with MRMPS method compared with various

available theoretical studies as a function of energy.

0 2 4 6 8 10
Energy (eV)

0

1

2

3

4

5

To
ta

l c
ro

ss
 se

ct
io

n 
(1

0-1
6 cm

2 )

Pseudostates(spdfgh)
Hoffman et al (1982)
Charlton et al (1982)
Deuring et al (1983)
Zecca et al (2009)

Figure 6.8: A comparison of experiment with our MRMPS calculation for total elastic cross

sections for positron-H2 collisions.
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very similar cross sections at energies below the positronium formation threshold. In

particular, our results with the MRMPS method give good agreement with Armour

et al. (1990)’s integral cross sections, although there are minor differences between the

corresponding eigenphase sums. At energies of 7 eV, Mukherjee and Sarkar (2008)’s

cross sections increase rapidly due to the Ps formation included in their study. For

energies above 10 eV, Mukherjee and Sarkar (2008) are in excellent agreement with

experiments (Hoffman et al., 1982; Charlton et al., 1983; Deuring et al, 1983; Zecca

et al., 2009).

Figure 6.8 compares our total elastic cross sections with spdfgh-PCOs with several

experimental measurements (Hoffman et al., 1982; Charlton et al., 1983; Deuring et al,

1983; Zecca et al., 2009) for positron collisions with hydrogen molecule. Our results

with MRMPS method are in excellent agreement with measurement of Hoffman et al.

(1982) at energies below the positronium formation threshold. Zecca et al. (2009) is the

only available measurement that gave total elastic cross sections below 1 eV. However,

at energies above 1 eV, Zecca et al. (2009)’s result lies higher than our calculation.

Charlton et al. (1983) lies below our results at energies from 2 eV to 6 eV, and then

agree with them above 6 eV.

6.4 Conclusion

Total elastic cross sections for positron collision with H2 molecule have been calculated

using the MRMPS method at energies below the positronium formation threshold. We

find excellent agreement between our results and other attempts performed by theoret-

ical and experimental groups. The MRMPS method provides a good representation of

polarization potential, so calculations with MRMPS method give much better results

than calculations without MRMPS method. In our MRMPS calculation, appropriate

parameters α0 and β for the PCO basis need to be chosen carefully. The eigenphase

sums and total elastic cross sections converged to MRMPS calculation with spdfgh-

PCOs for models considered in our calculations. It reveals that MRMPS method give

us a better representation of the polarization potential than other models we performed.

It should be noted that the main contribution to total elastic cross sections is from Σ+
g

symmetry under 2 eV. Positron collision with the more complicated, non-polar molecu-

lar system C2H2 are presented in next chapter. Calculations with the MRMPS method
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for positron-H2 collision developed in this chapter are employed to calculate the anni-

hilation parameter Zeff in chapter 8; this represents a crucial test for the method.
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Chapter 7
Positron collisions with C2H2

7.1 Introduction

In this chapter, calculated elastic integral scattering cross sections for positron-C2H2

collisions are obtained using the molecular R-matrix with pseudostates (MRMPS)

method at energies below the positronium formation threshold. The MRMPS method

is shown to be a successful procedure for dealing with positron-hydrogen molecule col-

lision at low energies in last chapter. C2H2 is a non-dipolar molecule as H2, but has

a much more complicated electronic structure than the H2 molecule. Acetylene is the

simplest alkyne that has a large Zeff , so we chose it as a benchmark system for a

positron-molecule collision study.

Calculated integral cross sections and differential cross sections for positron collision

with C2H2 using the R-matrix method has been performed with the static model and

static plus polarisation model by Franz et al. (2008). These authors also gave the ICS

and DCS results computed using semiempirical procedures based on density functional

theory (DFT) and the distributed positron model (DPM). ICS and DCS calculations

for positron-C2H2 collision were also performed by several theoretical groups (da Silva

et al., 1998; de Carvalho et al., 2000, 2003; Nishimura and Gianturco, 2005). Total

elastic scattering cross sections were measured by Sueoka and Mori (1989) for positron

collision with acetylene at incident energies from 1 eV to 400 eV. Measured elastic DCS

were reported by Kauppila et al. (2002) at 4, 6.75, 10, 20, 50, 100 eV.

The study of positron collision with acetylene molecule was performed at different
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7.2 Target calculation

levels: the static, static plus polarisation and close-coupling with MRMPS method.

Within the close-coupling with MRMPS method, our calculations are carried out based

on the increasing levels of the PCOs included in target representations. We also analyze

the existence of a virtual state by calculating the scattering length based on the s-wave

eigenphase. The next sections describe the calculations in details.

7.2 Target calculation

All our calculations were carried out at the linear equilibrium geometry of HCCH,

rCC=1.208 Å and rCH=1.058 Å. The target GTO basis sets for C and H atoms are

double zeta plus polarisation (DZP) set of Dunning Jr (1970). These give 9s 5p 1d

basis for C and 5s 2p for H.

To understand how important the polarisation effects for positron-C2H2 collision

at low energies, we performed the calculations using several different models, the same

ones used for positron collison with hydrogen molecule reported in last chapter. We

began from the simplest models, the static model and SP model. The target was

frozen in its ground state X̃ 1Σg
+ state, which has the 1σg

2 1σu
2 2σg

2 2σu
2 3σg

2 1πu
4

configuration. For both of the static and SP model, the target wavefunction was taken

from a Hartree-Fock self-consistent field (HF-SCF) calculation.

For MRMPS calculations, several PCOs basis were tested with (α0 = 0.16, 0.17,

β = 1.4) and (α0 = 0.10, β = 1.4) based on the spd-PCOs model. The deletion

threshold for orthogonalizing the SCF MOs to PCOs is chosen as δthrsh−targ = 2×10−4.

The target state distribution for various (α0,β) for model 4 (describes below), is shown

in figure 7.1. The energy differences among these tests are fairly small among the three

MRMPS model. The PCO basis set with α0 = 0.17 and β = 1.4 are used to run our

target and scattering calculations up to l=4 for various MRMPS calculations.

C2H2 has 14 electrons, so the CI calculation can be very complicated. We tested

different complete active space configuration interaction (CASCI) calculations for the

target runs based on the MRMPS method and chose a model which gives good target

energies and a relatively small Hamiltonian matrix size for the scattering calculation.

Table 7.1 shows the CI models tested and the dimension of the Hamiltonian for each

target calculation based on an spd-PCOs calculation, represented by the notation of

D∞h point group.
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7.2 Target calculation

Table 7.1: Target configurations of different models. N is the size of hamiltonian matrix for Σ+
g

symmetry. PCO represents pseudo-continuum orbitals.

Model N Configurations

1-1 2739 (1σg 1σu)
4 (2σg 3σg 4σg 5σg 2σu 3σu 1πu 1πg)

10

(1σg 2σg 3σg 1σu 2σu 1πu)
13 (PCOs)1

1-2 827 (1σg 1σu)
4 (2σg 3σg 4σg 2σu 3σu 1πu 1πg)

10

(1σg 2σg 3σg 1σu 2σu 1πu)
13 (PCOs)1

2 122 (1σg 2σg 3σg 1σu 2σu)
10 1πu

3 (4σg 3σu 1πg)
1

(1σg 2σg 3σg 1σu 2σu)
10 1πu

2 (4σg 3σu 1πg)
2

(1σg 2σg 3σg 1σu 2σu)
10 1πu

3 (PCOs)1

(1σg 2σg 3σg 1σu 2σu)
10 1πu

2 (4σg 3σu 1πg)
1 (PCOs)1

3 3415 (1σg 1σu 2σg)
6 1πu

4 (3σg 4σg 2σu 3σu 1πg)
4

(1σg 1σu 2σg)
6 1πu

3 (3σg 4σg 2σu 3σu 1πg)
5

(1σg 1σu 2σg)
6 1πu

4 (3σg 4σg 2σu 3σu 1πg)
3 (PCOs)1

(1σg 1σu 2σg)
6 1πu

3 (3σg 4σg 2σu 3σu 1πg)
4 (PCOs)1

4 860 (1σg 1σu)
4 (2σg 3σg 4σg 2σu 3σu 1πu 1πg)

10

(1σg 2σg 3σg 1σu 2σu)
10 1πu

3 (PCOs)1

(1σg 2σg 3σg 1σu 2σu)
10 1πu

2 (4σg 3σu 1πg)
1 (PCOs)1

5-1 1511 (1σg 1σu)
4 (2σg 3σg 4σg 2σu 3σu 1πu 1πg)

10

(1σg 1σu)
4 (2σg 3σg 2σu 1πu)

9 (PCOs)1

(1σg 1σu)
4 (2σg 3σg 2σu 1πu)

8 (4σg 3σu 1πg)
1 (PCOs)1

5-2 3656 (1σg 1σu)
4 (2σg 3σg 4σg 5σg 2σu 3σu 1πu 1πg)

10

(1σg 1σu)
4 (2σg 3σg 2σu 1πu)

9 (PCOs)1

(1σg 1σu)
4 (2σg 3σg 2σu 1πu)

8 (4σg 5σg 3σu 1πg)
1 (PCOs)1

6 6384 (1σg 1σu)
4 (2σg 3σg 4σg 2σu 3σu 1πu 1πg)

10

(1σg 1σu)
4 (2σg 3σg 2σu 1πu)

9 (PCOs)1

(1σg 1σu)
4 (2σg 3σg 2σu 1πu)

8 (4σg 3σu 1πg)
1 (PCOs)1

(1σg 1σu)
4 (2σg 3σg 2σu 1πu)

7 (4σg 3σu 1πg)
2 (PCOs)1

7 16112 (1σg 1σu 2σg)
6 (3σg 4σg 2σu 3σu 1πu 1πg)

8

(1σg 1σu 2σg)
6 (3σg 4σg 2σu 3σu 1πu 1πg)

7 (PCOs)1

8 188924 (1σg 1σu)
4 (2σg 3σg 4σg 5σg 2σu 3σu 1πu 1πg)

10

(1σg 1σu)
4 (2σg 3σg 4σg 5σg 2σu 3σu 1πu 1πg)

9 (PCOs)1
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7.2 Target calculation

Table 7.2: Polarisabilities of C2H2 in a3
0 for the basis of PCOs with β = 1.4 and α0 = 0.17 for

different models. The experimental data are from Nakagawa (1995).

Model α‖ α⊥

1-1 26.51 15.65

1-2 26.33 15.67

2 6.78 4.18

3 33.84 15.65

4 26.89 14.88

5 24.37 12.83

6 27.23 13.82

7 26.87 14.20

8 27.13 13.04

exp. 30.73 18.83

Take Model 1-1 as an example, the first line gives the CAS SCFs only related to

target MOs, while the PCOs in the second line are represented by the configurations

as

6-22ag 2-8b2u 2-8b3u 1-5b3u 4-10b1u 2-6b2g 2-6b3g

Figure 7.2 shows the target state distributions of different CI models for Σ+
g sym-

metry with α0=0.17, β = 1.4 and deletion threshold δthrsh−tar = 2 × 10−4 with PCO

comprising 10s, 10p and 6d orbitals. The chosen states span energies up to about 45 eV

above the ground target state.

We need to chose an optimal model that gives fairly small Hamiltonian matrix and

good polarisabilities. As shown in table 7.1, the only difference between Model 1-1

and 1-2 is that there is one more σg orbital in the CAS for model 1-1 than 1-2. These

make the number of target configurations decrease from 2739 to 811. The second

configuration in model 1-1 and 1-2 are the same which keeps thirteen electrons freely

placing in 1σg 2σg 3σg 1σu 2σu 1πu orbitals, one electron was in the PCOs. In model 2,

ten electrons were frozen in 1σg 2σg 3σg 1σu 2σu. So it gives much smaller size of

the Hamiltonian matrix (122) than model 1. But the ground state of model 2 is A

2Πu instead of X 2Σg. Six electron were frozen in the core in model 3. The PCO
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CSFs correspond to the MO CSFs, but with one electron was put into a PCOs from

3σg 4σg 2σu 3σu 1πg. Model 4 was constructed using the MO CSFs from model 1-

2 and the two PCO CSFs from model 2. This model gives a Hamiltonian matrix

of size 860, which is fairly a good choice for continuing calculations. The MO CSFs

for model 5 and model 6 are the same as model 4, and several configuration for the

PCO CSFs were generated by placing one or two electron in the 4σg 3σu 1πg orbitals.

The extra PCO CSFs in model 6 leads to a larger Hamiltonian matrix of dimension

6384 compared to 1511 for model 5. Obviously, model 7 and 8 give significantly more

configurations than the models designed above. Model 8 is the ideal model for MRMPS

calculation. However, the large size of Hamiltonian matrix would require an extremely

high specification for the computer to do the implied scattering calculation. In order to

choose an appropriate model, the polarisabilities for each model are shown in Table 7.2.

The parallel component (α‖) of the polarisability tensor derives from 1Σ+
u states, while

the perpendicular component (α⊥) are determinded by 1Π+
u states. Both α⊥ and

α‖ of model 2 gives rather small values compared to experimental values (Nakagawa,

1995), it is because the pure target representation without PCOs does not match to

the representation with PCOs, which augments the denominator of the definition of

the polarisability. Model 3 gives the biggest polarisabilty among these given models,

but it also gives a fairly large size of Hamiltoninian matrix (3415).

Given the critaria for choosing an appropriate model, model 4 was chosen as the

target representation. Model 4 gives the PCOs in the configurations represented as in

D2h notation:

5-21ag 2-8b2u 2-8b3u 1-5b3u 4-10b1u 2-6b2g 2-6b3g

for spd-PCOs calculation.

5-21ag 2-18b2u 2-18b3u 1-5b3u 4-20b1u 2-6b2g 2-6b3g 1-5au

for spdf-PCOs calculation.

5-36ag 2-18b2u 2-18b3u 1-15b3u 4-20b1u 2-16b2g 2-16b3g 1-5au

for spdfg-PCOs calculation.

Polarisabilities for various MRMPS calculations shown in table 7.3 are performed

based on model 4 with β = 1.4 and α0 = 0.17. Improved polarisabilities for both

parallel component and perpendicular component are give with the more complicated

PCO models.
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7.3 Scattering calculation

Table 7.3: Polarisabilities of C2H2 for the basis of PCOs with β = 1.4 and α0 = 0.17 for

different MRMPS calculations based on model 4.

Model α‖ α⊥

spd 26.89 14.88

spdf 27.57 13.49

spdfg 27.64 15.26
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Figure 7.1: Target state distributions of Σ+
g symmetry for various α0 with β = 1.4 and deletion

threshold δthrsh−tar = 2 × 10−4 based on spd-PCOs model.

7.3 Scattering calculation

Scattering calculations were performed starting from a study at the static level. The

continuum basis set used to describe the incident positron is from Faure et al. (2002),

which gives the continuum orbitals as (9s,7p,7d,7f,6g) for R-matrix radius a = 10 a0.

As described in the previous chapter, positron can be placed all target and continuum

orbitals. For the SP model, a number of single excited target configurations were

generated by allowing single excitations of one target electron which occupies a virtual

orbital.
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Figure 7.2: Target state distributions of Σ+
g symmetry for C2H2.

For the MRMPS calculation, since some exponents of the continuum orbitals are

higher than those in the PCO basis, they must be removed from the basis. The con-

tinuum orbitals used in the calculations were (6s,7p,7d,6f,6g) when α0 = 0.17. The

deletion threshold for orthogonalizing the COs to PCOs were chosen as δthrsh−scat =

2 × 10−6. The target states energies are chosen up to about 20 eV above the ground

state. 42 singlet target states are included in the close-coupling expansion for spd-PCOs

model, 64 states for spdf-PCOs model and spdfg-PCOs model. The CI models used in

our calculation can be represented as:

(1σg 1σu)
4 (2σg 3σg 4σg 2σu 3σu 1πu 1πg)

10 (COs)1p

(1σg 2σg 3σg 1σu 2σu)
10 1πu

3 (PCOs)1 (COs)1p

(1σg 2σg 3σg 1σu 2σu)
10 1πu

2 (4σg 3σu 1πg)
1 (PCOs)1 (COs)1p

and L2 CSFs:

(1σg 1σu)
4 (2σg 3σg 4σg 2σu 3σu 1πu 1πg)

10 (CAS+PCO)1p

(1σg 2σg 3σg 1σu 2σu)
10 1πu

3 (PCOs)1 (CAS+PCO)1p

(1σg 2σg 3σg 1σu 2σu)
10 1πu

2 (4σg 3σu 1πg)
1 (PCOs)1 (CAS+PCO)1p

Although we chose a model which gives a fairly small size of Hamiltonian matrix

among the models we designed, it still gives huge dimension of Hamiltonian for scat-
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Table 7.4: Dimension of the Hamiltonian matrix for scattering calculations for different MRMPS

calculations.

spd spdf spdfg

Σ+
g 52196 87711 141332

Πu 50249 85544 138281

Σ−
g 49363 84588 137572

Σ+
u 51803 87593 140888

Πg 50897 86602 140179

Σ−
u 49340 84540 137496

tering calculation (see table 7.4). So the partitioned R-matrix method (Tennyson,

2004) was used to cut the job time. The final number of solutions retained from the

Hamiltonian matrix is 3000 for all MRMPS calculations we performed.

7.4 Results

The eigenphase sums of Σg
+ symmetry for positron-C2H2 scattering were calculated

using various R-matrix models: static, SP and close-coupling with MRMPS. For cal-

culations at the static level, the eigenphase are negative and decrease in the energy

region below 5 eV, as shown in the upper panel of figure 7.3. The SP calculation gives

slightly higher eigenphase than spd-PCOs calculations at energies below 0.3 eV. It falls

through zero at about 2.2 eV, which predicts a minimum value of cross sections for

Σg
+ symmetry. The eigenphase sums calculated with MRMPS method with model 4

(see table 7.1) shows progressively increasing results from the spd-PCOs calculation to

the spdfg-PCOs calculation. For calculations with spdfg-PCOs, the eigenphase becomes

negative at about 4.2 eV. The upper panel also gives the semi-empirical eigenphase

sums calculated by Franz et al. (2008), whose value with π added, lies above all of our

R-matrix calculations. The lower panel of figure 7.3 shows the same eigenphase sums

of calculations with MRMPS method as upper panel, but with the collision energies

up to 1.3 eV. Apparently, it shows the eigenphases peak at about 0.22 eV. Figure 7.5

represents the corresponding total elastic cross sections in Å2 for Σ+
g symmetry as a

function of energy with different MRMPS calculations. The spdfg-PCOs model gives
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Figure 7.3: Comparison of eigenphase sums for different R-matrix calculations with semi-

empirical results for Σg
+ symmetry.
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Table 7.5: scattering length ascat for positron-C2H2 collision.

PCOs ascat(a0) σsl(a0
2) σtol(a0

2)

spd -4.130 214.2 202.6

spdf -5.955 445.4 420.5

spdfg -6.735 569.7 538.6
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Figure 7.4: The scattering length for positron-C2H2 collision using MRMPS method in terms

of J .

the largest values at energies below 1.8 eV then spdf and spd models.

Figure 7.6 shows all our R-matrix calculations of integral scattering cross sections

below the positronium formation threshold. The static calculation gives lower initial

integral cross sections than other models. However, it increases from 0.4 eV. It even lies

higher than spd-PCOs model above 1.8 eV. At near zero energies, results with MRMPS

gives higher results than static and SP models. While the most complicated spdfg-PCOs

model employed for MRMPS calculation gives the highest ICS. These results indicate

that the application of the MRMPS method leads to an improved representation for

polarisation effects for positron collision acetylene at eneries below 5 eV. Comparing

with figure 7.5, the ICS is dominated by Σ+
g symmetry at lower energies.

For positron-C2H2 collision, the cross sections increase rapidly as the scattering en-
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Figure 7.5: Calculated positron-C2H2 total elastic scattering cross sections for Σg
+ symmetry

corresponding to different MRMPS calculations.

ergy goes to zero; the scattering length ascat calculated from s-wave eigenphase increases

as larger PCOs employed in our calculations, as shown in table 7.5. The negative scat-

tering length we obtained suggests the presence of a virtual state rather than an s-wave

bound states (Taylor, 1972). Table 7.5 also reports s-wave scattering cross sections

derived by using the formula σsl=4π|ascat|2, compared to the s-wave total elastic cross

sections at near zero energy. There is reasonable agreement between these two cross

sections. However, the scattering length calculations by de Carvalho et al. (2003) gives

ascat=-229 a0, and Nishimura and Gianturco (2005) gives ascat=-90.07 a0 for positron

collision with C2H2. An ideal virtual state should be derived when s-wave eigenphase

as δ=π
2 . Accordingly, the position of virtual state given by κ= 1

ascat
.

The scattering length for positron-C2H2 collision using different MRMPS models

is also shown in figure 7.4 in terms of J , the value of highest l included in the PCO

expansion. The scattering length converges to -7.575 a0 as 1/3(J +1)3, which gives the

σsl=721.1 a2
0.

Comparisons of the calculated elastic integral cross sections from our MRMPS cal-

culation with the spdfg-PCOs model were made with the experimental measurement

101



7.4 Results

0 1 2 3 4 5
Energy (eV)

0

10

20

30

40

50

in
te

gr
al

 c
ro

ss
 se

ct
io

ns
 (1

0-1
6 cm

2 )

pseudostates(spdfg) 
pseudostates(spdf) 
pseudostates(spd) 
SP calculation
static calculation

Figure 7.6: Elastic integral cross sections for positron-C2H2 collision using various R-matrix

models.

Sueoka and Mori (1989) and the semi-empirical study of Franz et al. (2008). Figure 7.7

shows that Franz et al. (2008) gives a good agreement with experiment. Although our

integral cross sections lie lower than the measurement, an MRMPS calculation with

spdfgh-PCOs can be assumed to give higher results than spdfg-PCOs showed in fig-

ure 7.7.

Given the relatively poor agreement for our MRMPS calculation of model 4 with

the experiment, more models were tested for calculating the total elastic cross sections

(see figure 7.8). For the MRMPS calculation with spd-PCOs and Ag symmetry, four

models have been carried out. Among them, model 3 gives the best results of the cross

sections and leads to an important improvement for the energies below 2 eV compared

to the other models. Furthermore, for model 1-1, calculation with spdfg-PCOs gives a

significant increment to the spd-PCOs one, particularly at very low energies. Hence,

we can expect that for calculations of model 3 with spdfg-PCOs, better agreement

with the measured cross sections may be obtained. Such calculations are currently

in progress. It is interesting to note that model 3 does not provide the most flexible

target representation of those tested, but is the one with the best balance with the

pure CAS-CI and PCO parts of the wave function. This observation may provide an
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Figure 7.7: Comparisons of calculated integral cross sections with other theoretical and exper-

imental studies for positron-C2H2 scattering at energies below 5 eV.

important pointer for designing futrue models.

7.5 Conclusions

Elastic integral scattering cross sections for positron-C2H2 collisions with pseudostates

up to g orbitals are reported and compared to relevant measurement (Sueoka and Mori,

1989) and previous theoretical results (de Carvalho et al., 2000; Franz et al., 2008) at

energies below the positronium formation threshold. Our MRMPS method calculations

give better results than calculations using static and SP models. This suggests that

again the MRMPS method gives a better representation for polarisation effects at the

energies we consider. Preliminary results for the annihilation parameter Zeff for C2H2

molecule based on the computational models describes in this chapter are shown in

next chapter.
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Figure 7.8: Comparisons of calculated integral cross sections with various models for positron-

C2H2 scattering at energies below 5 eV.

104



Chapter 8
Annihilation rates of low-energy positron

scattering with molecules

8.1 Introduction

The value of Zeff is the effective number of target electrons which are available for

annihilating with incident positron. Theoretical studies can give accurate Zeff val-

ues for simple atoms such as hydrogen (Humberston and Wallace, 1972) and helium

(Campeanu and Humberston, 1977; McEachran et al., 1977). Most theoretical molecu-

lar positron annihilation studies focus on small molecules like H2 due to the limitations

in theory. Calculations of Zeff for H2 have been carried out using the Schwinger multi-

channel method (Varello et al., 2002), the body-fixed vibrational-close-coupling method

(Gianturco and Mukkerjee, 2000), the complex Kohn variational method (Cooper et al.,

2008; Cooper and Armour, 2008) and confined variational method (Zhang et al., 2009).

Franz et al. (2006) corrected Gianturco’s calculation for lack of energy normalization of

the wave function and also shows Zeff values which additionally included an enhance-

ment factor. The comparable experiments were performed by Laricchia et al. (1987)

and Heyland et al. (1982).

Researchers are also interested in studying positron annihilation with organic molecules

which gives very large value of Zeff . Among these organic molecules, for example,

acetylene C2H2 gives the value of Zeff=3160. C2H2 is the simplest organic molecule

that gives very large value of Zeff . For molecules with large Zeff , one needs to take
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8.1 Introduction

account of the effect of nuclear motion which may strongly enhance the annihilation

rates. Gribakin (2002) suggested that the low-energy positrons can be captured in

vibrational Feshback resonances with the target molecules to form a positron-molecule

bound state. This means the positron is bound to a vibrationlly excited state of the

target. Then the positron couples to the vibrational positron-molecule complex, which

causes the increasing probability of annihilation, at low incident energies. Gilbert et al.

(2002) uses experimental work confirmed the importance of the molecular vibrations

for processes that give large Zeff . However, Gribakin and co-workers studies have all

been based on very approximate treatment of the electronic/positronic motions.

Gribakin and Ludlow (2002) applied many-body theory to the calculation of positron

binding energies and annihilation rates. They found convergence behaviours of the

partial-wave expansions with rates of 1/(l+ 1
2)4 and 1/(l+ 1

2)2, respectively. In partic-

ular, they derived theoretically for Zeff ,

Z leff ∼ Z l−1
eff +

CZeff

(l + 1
2)2

(8.1)

where CZeff
is a constant. However, numerical experiments showed that this behaviour

was only found at very high l. Gribakin and Ludlow (2004) found a fit for equation (8.1)

based on the calculation with l=9 and l=10,

Zeff = Z leff +
∞
∑

L=l+1

CZeff

(L+ 1
2 )2

(8.2)

≈ Z leff +
CZeff

l + 1
2

(8.3)

Using this approximation, the value of Zeff gives an error of about 10%. In the same

way, scattering length can be given as:

Ascat ∼ Alscat +
CAscat

(l + 1
2)3

. (8.4)

Mitroy and Bromley (2006) suggest a better approximation for equation 8.2 according

to
∞
∑

L=l+1

CZeff/Ascat

(L+ 1
2)n

≈
CZeff/Ascat

(n− 1)(l + 1)n−1
(8.5)

which gives an error about 0.1%.

Zeff values for positron-H2 calculated by Zhang et al. (2009) using the confined

variational method, showed the scattering length and Zeff in term of the internuclear

distance and found that a virtual state is formed at R=3.4 a0.
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8.2 Calculations

A major difficulty in obtaining accurate value of Zeff comes from the degree of

accuracy required for the scatterring wave function at low collision energies. A new

computational code was developed to calculate Zeff below the positronium formation

using R-matrix method as discussed in Chapter 4. Various wavefunctions are used to

calculate Zeff according to models presented in Chapter 6 and Chapter 7.

8.2 Calculations

Obtaining accurate values of Zeff is dependent on an accurate description of the scat-

tering wave function. Here we use the H2 and C2H2 wave functions calculated using

several models described in Chapter 6 and Chapter 7 to obtain Zeff . Calculations were

initially performed for a test with no potential case, which means there is no interaction

between the projectile and the target. Only one-electron and one-positron integrals are

required in such a calculation. As expected, these calculations give constant results

equal to the number of target electrons as Zeff=2 for H2 and 14 for C2H2 molecule for

all energies below the positronium formation threshold.

For calculations of positron annihilation with H2, we used wave functions from the

models presented in Chaper 6: the static model, static plus polarisation model and

close-coupling models with the MRMPS method. Therefore, the same calculations are

employed as the elastic scattering calculations shown previously. The most complex

Zeff calculation for H2 with the MRMPS method is the spdfgh-PCOs calculation, in

which 28 target states are included.

8.3 Zeff results for H2

The Zeff results for H2 molecule are shown in Figure 8.1 as a function of incident

positron energy and model. Among these calculations, results for static model even

gives the values of Zeff smaller than the number of target electrons, while SP model

produces higher Zeff value of 2.57 at 0.037 eV than calculation with static potential.

Calculations with the MRMPS method give a significantly higher values compared to

the static and SP models. All the models behave similarly as a function of incident

energy. At near zero energy k → 0, the values of Zeff increase to the largest number.

Particularly for calculation with spdfgh-PCOs, it gives Zeff=8.26 at incident positron

energy of 0.037 eV.
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8.3 Zeff results for H2
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Figure 8.1: Zeff for H2 molecule in terms of energies for different models for all the symmetries.

It also can be seen from Figure 8.1 that the Zeff values are very sensitive to the

inclusion of polarisation in the calculation, particularly at low incident energies. The

representations of polarisation effects modelled by the MRMPS method play a very

important role not only for total cross section calculations but also for annihilation

parameter Zeff calculations at low incident positron energies. Therefore, more com-

plex calculation such as the MRMPS method with spdfghi-PCOs should yield slight

improvement compared to spdfgh-PCOs model at considered enengies.

Figure 8.2 compares the Zeff results of H2 molecule with 1 target state and 28 target

states included in the MRMPS calculation using the spdfgh-PCOs model, respectively,

at energies below 5 eV. The difference between the results occurs at lower energies

those below 0.8 eV. The main contribution to Zeff at lower energy comes from the Σ+
g

symmetry. The inclusion of more target states enhances the Zeff value at near zero

energies.

As discussed above, we can obtain improved results of Zeff for H2 molecule using

MRMPS method at energies below 5 eV. Hence, we tried to plotted Zeff results only

with MRMPS method in term of factor 1/(J + 1
2 ) and 1/(J + 1) with increment of

the pseudo-orbitals J from s-PCOs to spdfgh-PCOs calculations (see figure 8.3). After

fitting our results, Zeff converges to 10.30 and 10.53, respectively, as J → ∞.
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8.3 Zeff results for H2
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Figure 8.2: Zeff of H2 molecule for different number of target states included in the MRMPS

calculation with spdfgh-PCOs.

Our results can be compared to the Zeff=6.67 at incident positron energy of 0.1 eV

calculated by Varello et al. (2002) using Schwinger multichannel method. Franz et al.

(2006) used an enhancement factor to model the density of positron which yields

Zeff=11.55 at 0.001eV. Zeff=7.14 was calculated using the Kohn variational method

(Cooper and Armour, 2008) at 0.14 eV for thermal positrons at 297 K. A reliable

nonempirical calculation, which used very accurate variational wave functions at low

scattering energy, calculated by Armour et al. (1990) gives the value of Zeff=10.2.

The best Zeff result is obtained by Zhang et al. (2009) so far, which yields Zeff=15.7

at zero energy. The experimental result of Zeff for elastic scattering of positron by

hydrogen molecule at low energies is 14.61±0.14 performed by Laricchia et al. (1987)

at room temperature.

Figure 8.4 shows the Scattering length for positron-H2 calculation with MRMPS

method in terms of (J+ 1
2)−3 and (J+1)−3. The scattering length presents a decreasing

behaviour with increasing J . It gives the scattering length a=-2.06 at J → ∞, compared

to Zhang et al. (2009) which gives scattering length of -2.59.
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8.3 Zeff results for H2
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Figure 8.3: Zeff using MRMPS method for H2 molecule with 28 states at 0.037 eV.

0 0.05 0.1 0.15 0.2 0.25 0.3
(J+1/2)-3

-3

-2.5

-2

-1.5

-1

-0.5

0

Sc
at

te
rin

g 
le

ng
th

 (a
0)

0 0.03 0.06 0.09 0.12 0.15
(J+1)-3

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 8.4: Scattering length using MRMPS method for H2 molecule at 0.1 eV.
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8.4 Zeff results for C2H2
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Figure 8.5: Zeff for positron-C2H2 annihilation with no potential and static potential model.

8.4 Zeff results for C2H2

Only very basic Zeff calculations for positron-C2H2 annihilation are performed due

to the unexpected behaviour for calculation with partial waves up to d wave. For no

potential model with s and p continua, Zeff is obtained as 14 at very low energy (see

figure 8.5) and decreases monotonically with increasing energy. However, if d wave is

added to above calculation, Zeff rises to 15 at about 1 eV. Some possibilities may cause

this problem: integrals involved the coupling of d with s or p orbitlas; normalization of

the wave function. The code correction is in progress.

8.5 Conclusion

Calculations of annihilation parameter Zeff with H2 and C2H2 molecules are presented

at incident positron energy below the positronium formation threshold. The accuracy

of the wave function is the most important challenge for calculating Zeff . For H2, the

use of MRMPS method is shown to give much better values for Zeff than static and

SP models. Although the best value of Zeff obtained using MRMPS method can still

underestimate the measured value, the results show the expectation if more complicated

MRMPS calculation carries out.
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Chapter 9
Conclusion

Positron collisions with polar molecule H2O, apolar molecules H2 and C2H2 at in-

cident energies below the threshold of positronium formation are studied using the

R-matrix method. Previous studies of positron-molecule collisions using the R-matrix

method only considered diatomic targets. The modified polyatomic R-matrix code

was employed for the calculations of positron collision. A very efficient algorithm for

Hamiltonian matrix construction (Tennyson, 1996) was used in our calculations. This

thesis aims to use these developments to analyse the importance of polarisation effects,

which is hard to model between the scattered positron and electrons in the target,

for positron-molecule collisons. Various models were used to model polarisation in the

calculations for each molecules.

Rotationally resolved elastic total cross sections, differential cross sections and mo-

mentum transfer cross sections for low energy positron scattering with water molecule

using various models are calculated. These models, which include different levels of the

polarisation effects, show very similar results due to the large permanent dipole mo-

ment of the target. The contribution of Born correction leads to a significant increase

to the cross sections at considered energies from 0.25 to 7 eV.

Although both our results and all previous published measurements show strongly

forward peaking behaviour for positron-water collision at low energy, our results lie

above three of four experimental results. These three measurements neglect the effect

of low angle scattering. The one lying above our results overestimates the forward

scattering possibly due to the use of the electron DCS measurements to correct the
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positron measurements.

Beale et al. (2006), which is the most recent experimental study, give the acceptance

profile for the apparatus used. A theoretical correction to Beale et al’s experimental

total cross section is given based on our calculated DCS at low angles. After analysing

the cross section, the corrected experimental data give better agreement with our cal-

culated results than uncorrected ones at energies below 10 eV.

Calculations of positron collision with non-polar molecule H2 were carried out be-

low the positronium formation threshold uding the MRMPS method. Unlike positron

collisons with a polar molecule, the polarisation effects makes important contribution

for positron collision with apolar molecule at low energy. Polarisabilities of H2 gener-

ated using the MRMPS method give good agreement with accurate values calculated

by Augspurger and Dykstra (1988). Eigenphase sums and integral cross sections using

the close-coupling with MRMPS model show much better agreement with experiments

than the static and SP models. The improvement using the MRMPS method in our

results shows that a much better representation of polarisation effects at energies be-

low the threshold of positronium formation is obtained. The higher the level of PCOs

included in the calculation, the better are the results obtained, particularly at very low

scattering energies. Furthermore, the MRMPS calculations give convergent results for

the total cross section with increasing level of PCOs. Our best MRMPS calculation

with spdfgh-PCOs model, which gives very similar results with spdfg-PCOs model, has

excellent agreement with previous theoretical and experimental studies for positron

collsion with H2 molecule. Calculation with the MRMPS method gives an excellent

treatment of polarisation effects for low-energy positron-H2 collision.

Non-dipolar molecule C2H2 was also treated using the MRMPS method. Various

target configurations were performed. Due to the computational limitation, the ideal

model which gives huge size of Hamiltonian matrix causes computationally intractable

problem for scattering calculation. Hence, a MRMPS model which gives a fairly small

size of Hamitonian and good polarisabilites was chosen to apply to the scattering cal-

culation. The partitioned R-matrix method was used to reduce the running time for

diagonalizing the (N+1) Hamiltonian. Although our calculation performed using close-

coupling with MRMPS model gives better results than the static and SP models, our

MRMPS calculation cross sections still lie below the semi-empirical calculation ( Franz

et al., 2008) and measurement (Sueoka and Mori, 1989). Although the best current
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calculations still do not fully reproduce the experiment, it is indisputable that calcu-

lations with the MRMPS method provide a great improvement in the treatment of

polarisation.

MRMPS models with a more complex CASCI are shown to give better results for

the total cross section than the model we initialy chose yielding results very close to

the semi-empirical calculation ( Franz et al., 2008) for Ag symmetry. It is realistic to

expect that the three months long scattering calculations with the target model 3 of

Chaper 7 will show good agreement with the experiment. The ideal model (models)

with the huge size of Hamiltonian is also expected to give better results than the best

presently performed calculations if it becomes computationally feasible. This could be

achieved by moving the diagonalisation step to a large parallel computer. Something

that is currently being investigated for electron-scattering as a part of the UK-RAMP

project.

For the first time, the UK R-matrix code has been extended to calculate the anni-

hilation parameter Zeff at energies below the positronium formation threshold. The

accuracy of Zeff is greatly dependent on the accurate description of the scattering wave

function. For Zeff calculations of positron-H2 annihilation, wave functions derived from

models with MRMPS method were used. Given the success of the treatment for po-

larisation shown in the results of total cross section, Zeff calculated using, MRMPS

method gives very much better results than the static and SP model. However, the best

value of Zeff carried out using MRMPS method gives Zeff=7.56 at incident positron

energy of 0.1 eV which still underestimates the experiments. The values of Zeff were

fitted in terms of the MRMPS model performed from s-PCOs to spdfgh-PCOs calcula-

tions, and extrapolate to a value of 10.73 which compares well with the experimental

value of Zeff and previous theoretical studies. Several simple calculations of Zeff

were carried out for positron annihilation with C2H2 molecule below the positronium

formation threshold but more work on this problems is required.

The numerical problems with the outer region wave function generation procedure

still exists when both open channels and close channels are included in the calculation,

especially for calculations with the MRMPS method which leads to a significant increase

in the number of channels in the outer region. Propagation of the positron wave function

regional 20 a0, as shown in this thesis, is unstable. Numerical problem with propagation

of many-channel problems to larger radii such like 50 a0 need to be solved.
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